176 research outputs found

    An Explicit Finite Element Integration Scheme for Linear Eight Node Convex Quadrilaterals Using Automatic Mesh Generation Technique over Plane Regions

    Get PDF
    This paper presents an explicit integration scheme to compute the stiffness matrix of an eight node linear convex quadrilateral element for plane problems using symbolic mathematics and an automatic generation of all quadrilateral mesh technique , In finite element analysis, the boundary problems governed by second order linear partial differential equations,the element stiffness matrices are expressed as integrals of the product of global derivatives over the linear convex quadrilateral region. These matrices can be shown to depend on the material properties and the matrix of integrals with integrands as rational functions with polynomial numerator and the linear denominator (4+ ) in bivariates over an eight node 2-square (-1 ).In this paper,we have computed these integrals in exact and digital forms using the symbolic mathematics capabilities of MATLAB. The proposed explicit finite element integration scheme is illustrated by computing the Prandtl stress function values and the torisonal constant for the square cross section by using the eight node linear convex quadrilateral finite elements.An automatic all quadrilateral mesh generation techniques for the eight node linear convex quadrilaterals is also developed for this purpose.We have presented a complete program which automatically discritises the arbitrary triangular domain into all eight node linear convex quadrilaterals and applies the so generated nodal coordinate and element connection data to the above mentioned torsion problem. Key words: Explicit Integration, Gauss Legendre Quadrature, Quadrilateral Element, Prandtl’s Stress Function for torsion, Symbolic mathematics,all quadrilateral mesh generation technique

    A New Approach to Automatic Generation of an all Pentagonal Finite Element Mesh for Numerical Computations over Convex Polygonal Domains

    Get PDF
    A new method is presented for subdividing a large class of solid objects into topologically simple subregionssuitablefor automatic finite element meshing withpentagonalelements. It is known that one can improve the accuracy of the finite element solutionby uniformly refining a triangulation or uniformly refining a quadrangulation.Recently a refinement scheme of pentagonal partition was introduced in [31,32,33]. It is demonstrated that the numerical solutionbased on the pentagonal refinement scheme outperforms the solutions based on the traditional triangulation refinement scheme as well as quadrangulation refinement scheme. It is natural to ask if one can create a hexagonal refinement or general polygonal refinement schemes with a hope to offer even further improvement. It is shown in literature that one cannot refine a hexagon using hexagons of smaller size. In general, one can only refine an n-gon by n-gons of smaller size if n = 5. Furthermore, we introduce a refinement scheme of a generalpolygon based on the pentagon scheme. This paper first presents a pentagonalization (or pentagonal conversion) scheme that can create a pentagonal mesh from any arbitrary mesh structure. We also introduce a pentagonal preservation scheme that can create a pentagonal mesh from any pentagonal mesh

    Glosarium Matematika

    Get PDF
    273 p.; 24 cm

    Refresher course in maths and a project on numerical modeling done in twos

    Get PDF
    These lecture notes accompany a refresher course in applied mathematics with a focus on numerical concepts (Part I), numerical linear algebra (Part II), numerical analysis, Fourier series and Fourier transforms (Part III), and differential equations (Part IV). Several numerical projects for group work are provided in Part V. In these projects, the tasks are threefold: mathematical modeling, algorithmic design, and implementation. Therein, it is important to draw interpretations of the obtained results and provide measures (Parts I-IV) how to build confidence into numerical findings such intuition, error analysis, convergence analysis, and comparison to manufactured solutions. Both authors have been jointly teaching over several years this class and bring in a unique mixture of their respective teaching and research fields

    Higher-Order DGFEM Transport Calculations on Polytope Meshes for Massively-Parallel Architectures

    Get PDF
    In this dissertation, we develop improvements to the discrete ordinates (S_N) neutron transport equation using a Discontinuous Galerkin Finite Element Method (DGFEM) spatial discretization on arbitrary polytope (polygonal and polyhedral) grids compatible for massively-parallel computer architectures. Polytope meshes are attractive for multiple reasons, including their use in other physics communities and their ease in handling local mesh refinement strategies. In this work, we focus on two topical areas of research. First, we discuss higher-order basis functions compatible to solve the DGFEM S_N transport equation on arbitrary polygonal meshes. Second, we assess Diffusion Synthetic Acceleration (DSA) schemes compatible with polytope grids for massively-parallel transport problems. We first utilize basis functions compatible with arbitrary polygonal grids for the DGFEM transport equation. We analyze four different basis functions that have linear completeness on polygons: the Wachspress rational functions, the PWL functions, the mean value coordinates, and the maximum entropy coordinates. We then describe the procedure to extend these polygonal linear basis functions into the quadratic serendipity space of functions. These quadratic basis functions can exactly interpolate monomial functions up to order 2. Both the linear and quadratic sets of basis functions preserve transport solutions in the thick diffusion limit. Maximum convergence rates of 2 and 3 are observed for regular transport solutions for the linear and quadratic basis functions, respectively. For problems that are limited by the regularity of the transport solution, convergence rates of 3/2 (when the solution is continuous) and 1/2 (when the solution is discontinuous) are observed. Spatial Adaptive Mesh Refinement (AMR) achieved superior convergence rates than uniform refinement, even for problems bounded by the solution regularity. We demonstrated accuracy in the AMR solutions by allowing them to reach a level where the ray effects of the angular discretization are realized. Next, we analyzed DSA schemes to accelerate both the within-group iterations as well as the thermal upscattering iterations for multigroup transport problems. Accelerating the thermal upscattering iterations is important for materials (e.g., graphite) with significant thermal energy scattering and minimal absorption. All of the acceleration schemes analyzed use a DGFEM discretization of the diffusion equation that is compatible with arbitrary polytope meshes: the Modified Interior Penalty Method (MIP). MIP uses the same DGFEM discretization as the transport equation. The MIP form is Symmetric Positive De_nite (SPD) and e_ciently solved with Preconditioned Conjugate Gradient (PCG) with Algebraic MultiGrid (AMG) preconditioning. The analysis from previous work was extended to show MIP's stability and robustness for accelerating 3D transport problems. MIP DSA preconditioning was implemented in the Parallel Deterministic Transport (PDT) code at Texas A&M University and linked with the HYPRE suite of linear solvers. Good scalability was numerically verified out to around 131K processors. The fraction of time spent performing DSA operations was small for problems with sufficient work performed in the transport sweep (O(10^3) angular directions). Finally, we have developed a novel methodology to accelerate transport problems dominated by thermal neutron upscattering. Compared to historical upscatter acceleration methods, our method is parallelizable and amenable to massively parallel transport calculations. Speedup factors of about 3-4 were observed with our new method

    CECM: A continuous empirical cubature method with application to the dimensional hyperreduction of parameterized finite element models

    Full text link
    We present the Continuous Empirical Cubature Method (CECM), a novel algorithm for empirically devising efficient integration rules. The CECM aims to improve existing cubature methods by producing rules that are close to the optimal, featuring far less points than the number of functions to integrate. The CECM consists on a two-stage strategy. First, a point selection strategy is applied for obtaining an initial approximation to the cubature rule, featuring as many points as functions to integrate. The second stage consists in a sparsification strategy in which, alongside the indexes and corresponding weights, the spatial coordinates of the points are also considered as design variables. The positions of the initially selected points are changed to render their associated weights to zero, and in this way, the minimum number of points is achieved. Although originally conceived within the framework of hyper-reduced order models (HROMs), we present the method's formulation in terms of generic vector-valued functions, thereby accentuating its versatility across various problem domains. To demonstrate the extensive applicability of the method, we conduct numerical validations using univariate and multivariate Lagrange polynomials. In these cases, we show the method's capacity to retrieve the optimal Gaussian rule. We also asses the method for an arbitrary exponential-sinusoidal function in a 3D domain, and finally consider an example of the application of the method to the hyperreduction of a multiscale finite element model, showcasing notable computational performance gains. A secondary contribution of the current paper is the Sequential Randomized SVD (SRSVD) approach for computing the Singular Value Decomposition (SVD) in a column-partitioned format. The SRSVD is particularly advantageous when matrix sizes approach memory limitations

    Numerical Methods for Partial Differential Equations

    Get PDF
    These lecture notes are devoted to the numerical solution of partial differential equations (PDEs). PDEs arise in many fields and are extremely important in modeling of technical processes with applications in physics, biology, chemisty, economics, mechanical engineering, and so forth. In these notes, not only classical topics for linear PDEs such as finite differences, finite elements, error estimation, and numerical solution schemes are addressed, but also schemes for nonlinear PDEs and coupled problems up to current state-of-the-art techniques are covered. In the Winter 2020/2021 an International Class with additional funding from DAAD (German Academic Exchange Service) and local funding from the Leibniz University Hannover, has led to additional online materials such as links to youtube videos, which complement these lecture notes. This is the updated and extended Version 2. The first version was published under the DOI: https://doi.org/10.15488/9248

    A sharp interface isogeometric strategy for moving boundary problems

    Get PDF
    The proposed methodology is first utilized to model stationary and propagating cracks. The crack face is enriched with the Heaviside function which captures the displacement discontinuity. Meanwhile, the crack tips are enriched with asymptotic displacement functions to reproduce the tip singularity. The enriching degrees of freedom associated with the crack tips are chosen as stress intensity factors (SIFs) such that these quantities can be directly extracted from the solution without a-posteriori integral calculation. As a second application, the Stefan problem is modeled with a hybrid function/derivative enriched interface. Since the interface geometry is explicitly defined, normals and curvatures can be analytically obtained at any point on the interface, allowing for complex boundary conditions dependent on curvature or normal to be naturally imposed. Thus, the enriched approximation naturally captures the interfacial discontinuity in temperature gradient and enables the imposition of Gibbs-Thomson condition during solidification simulation. The shape optimization through configuration of finite-sized heterogeneities is lastly studied. The optimization relies on the recently derived configurational derivative that describes the sensitivity of an arbitrary objective with respect to arbitrary design modifications of a heterogeneity inserted into a domain. The THB-splines, which serve as the underlying approximation, produce sufficiently smooth solution near the boundaries of the heterogeneity for accurate calculation of the configurational derivatives. (Abstract shortened by ProQuest.
    • …
    corecore