633 research outputs found

    Riemannian optimization of isometric tensor networks

    Full text link
    Several tensor networks are built of isometric tensors, i.e. tensors satisfying WW=IW^\dagger W = \mathrm{I}. Prominent examples include matrix product states (MPS) in canonical form, the multiscale entanglement renormalization ansatz (MERA), and quantum circuits in general, such as those needed in state preparation and quantum variational eigensolvers. We show how gradient-based optimization methods on Riemannian manifolds can be used to optimize tensor networks of isometries to represent e.g. ground states of 1D quantum Hamiltonians. We discuss the geometry of Grassmann and Stiefel manifolds, the Riemannian manifolds of isometric tensors, and review how state-of-the-art optimization methods like nonlinear conjugate gradient and quasi-Newton algorithms can be implemented in this context. We apply these methods in the context of infinite MPS and MERA, and show benchmark results in which they outperform the best previously-known optimization methods, which are tailor-made for those specific variational classes. We also provide open-source implementations of our algorithms.Comment: 18 pages + appendices, 3 figures; v3 submission to SciPost; v4 expand preconditioning discussion and add polish, resubmit to SciPos

    Complex cobordism classes of homogeneous spaces

    Full text link
    We consider compact homogeneous spaces G/H of positive Euler characteristic endowed with an invariant almost complex structure J and the canonical action \theta of the maximal torus T ^{k} on G/H. We obtain explicit formula for the cobordism class of such manifold through the weights of the action \theta at the identity fixed point eH by an action of the quotient group W_G/W_H of the Weyl groups for G and H. In this way we show that the cobordism class for such manifolds can be computed explicitly without information on their cohomology. We also show that formula for cobordism class provides an explicit way for computing the classical Chern numbers for (G/H, J). As a consequence we obtain that the Chern numbers for (G/H, J) can be computed without information on cohomology for G/H. As an application we provide an explicit formula for cobordism classes and characteristic numbers of the flag manifolds U(n)/T^n, Grassmann manifolds G_{n,k}=U(n)/(U(k)\times U(n-k)) and some particular interesting examples.Comment: improvements in subsections 7.1 and 7.2; some small comments are added or revised and some typos correcte

    GrassmannOptim: An R Package for Grassmann Manifold Optimization

    Get PDF
    The optimization of a real-valued objective function f(U), where U is a p X d,p > d, semi-orthogonal matrix such that UTU=Id, and f is invariant under right orthogonal transformation of U, is often referred to as a Grassmann manifold optimization. Manifold optimization appears in a wide variety of computational problems in the applied sciences. In this article, we present GrassmannOptim, an R package for Grassmann manifold optimization. The implementation uses gradient-based algorithms and embeds a stochastic gradient method for global search. We describe the algorithms, provide some illustrative examples on the relevance of manifold optimization and finally, show some practical usages of the package

    A Framework for Generalising the Newton Method and Other Iterative Methods from Euclidean Space to Manifolds

    Full text link
    The Newton iteration is a popular method for minimising a cost function on Euclidean space. Various generalisations to cost functions defined on manifolds appear in the literature. In each case, the convergence rate of the generalised Newton iteration needed establishing from first principles. The present paper presents a framework for generalising iterative methods from Euclidean space to manifolds that ensures local convergence rates are preserved. It applies to any (memoryless) iterative method computing a coordinate independent property of a function (such as a zero or a local minimum). All possible Newton methods on manifolds are believed to come under this framework. Changes of coordinates, and not any Riemannian structure, are shown to play a natural role in lifting the Newton method to a manifold. The framework also gives new insight into the design of Newton methods in general.Comment: 36 page

    Chern-Simons Theory and Topological Strings

    Full text link
    We review the relation between Chern-Simons gauge theory and topological string theory on noncompact Calabi-Yau spaces. This relation has made possible to give an exact solution of topological string theory on these spaces to all orders in the string coupling constant. We focus on the construction of this solution, which is encoded in the topological vertex, and we emphasize the implications of the physics of string/gauge theory duality for knot theory and for the geometry of Calabi-Yau manifolds.Comment: 46 pages, RMP style, 25 figures, minor corrections, references adde

    Sigma models for quantum chaotic dynamics

    Full text link
    We review the construction of the supersymmetric sigma model for unitary maps, using the color- flavor transformation. We then illustrate applications by three case studies in quantum chaos. In two of these cases, general Floquet maps and quantum graphs, we show that universal spectral fluctuations arise provided the pertinent classical dynamics are fully chaotic (ergodic and with decay rates sufficiently gapped away from zero). In the third case, the kicked rotor, we show how the existence of arbitrarily long-lived modes of excitation (diffusion) precludes universal fluctuations and entails quantum localization
    corecore