2,851 research outputs found

    Strong duality in conic linear programming: facial reduction and extended duals

    Full text link
    The facial reduction algorithm of Borwein and Wolkowicz and the extended dual of Ramana provide a strong dual for the conic linear program (P)sup⁥<c,x>∣Ax≀Kb (P) \sup {<c, x> | Ax \leq_K b} in the absence of any constraint qualification. The facial reduction algorithm solves a sequence of auxiliary optimization problems to obtain such a dual. Ramana's dual is applicable when (P) is a semidefinite program (SDP) and is an explicit SDP itself. Ramana, Tuncel, and Wolkowicz showed that these approaches are closely related; in particular, they proved the correctness of Ramana's dual using certificates from a facial reduction algorithm. Here we give a clear and self-contained exposition of facial reduction, of extended duals, and generalize Ramana's dual: -- we state a simple facial reduction algorithm and prove its correctness; and -- building on this algorithm we construct a family of extended duals when KK is a {\em nice} cone. This class of cones includes the semidefinite cone and other important cones.Comment: A previous version of this paper appeared as "A simple derivation of a facial reduction algorithm and extended dual systems", technical report, Columbia University, 2000, available from http://www.unc.edu/~pataki/papers/fr.pdf Jonfest, a conference in honor of Jonathan Borwein's 60th birthday, 201

    A Riemannian low-rank method for optimization over semidefinite matrices with block-diagonal constraints

    Get PDF
    We propose a new algorithm to solve optimization problems of the form min⁥f(X)\min f(X) for a smooth function ff under the constraints that XX is positive semidefinite and the diagonal blocks of XX are small identity matrices. Such problems often arise as the result of relaxing a rank constraint (lifting). In particular, many estimation tasks involving phases, rotations, orthonormal bases or permutations fit in this framework, and so do certain relaxations of combinatorial problems such as Max-Cut. The proposed algorithm exploits the facts that (1) such formulations admit low-rank solutions, and (2) their rank-restricted versions are smooth optimization problems on a Riemannian manifold. Combining insights from both the Riemannian and the convex geometries of the problem, we characterize when second-order critical points of the smooth problem reveal KKT points of the semidefinite problem. We compare against state of the art, mature software and find that, on certain interesting problem instances, what we call the staircase method is orders of magnitude faster, is more accurate and scales better. Code is available.Comment: 37 pages, 3 figure

    On the Burer-Monteiro method for general semidefinite programs

    Full text link
    Consider a semidefinite program (SDP) involving an n×nn\times n positive semidefinite matrix XX. The Burer-Monteiro method uses the substitution X=YYTX=Y Y^T to obtain a nonconvex optimization problem in terms of an n×pn\times p matrix YY. Boumal et al. showed that this nonconvex method provably solves equality-constrained SDPs with a generic cost matrix when p≳2mp \gtrsim \sqrt{2m}, where mm is the number of constraints. In this note we extend their result to arbitrary SDPs, possibly involving inequalities or multiple semidefinite constraints. We derive similar guarantees for a fixed cost matrix and generic constraints. We illustrate applications to matrix sensing and integer quadratic minimization.Comment: 10 page

    Inverse polynomial optimization

    Full text link
    We consider the inverse optimization problem associated with the polynomial program f^*=\min \{f(x): x\in K\}andagivencurrentfeasiblesolution and a given current feasible solution y\in K.Weprovideasystematicnumericalschemetocomputeaninverseoptimalsolution.Thatis,wecomputeapolynomial. We provide a systematic numerical scheme to compute an inverse optimal solution. That is, we compute a polynomial \tilde{f}(whichmaybeofsamedegreeas (which may be of same degree as fifdesired)withthefollowingproperties:(a) if desired) with the following properties: (a) yisaglobalminimizerof is a global minimizer of \tilde{f}on on KwithaPutinarâ€Čscertificatewithanaprioridegreebound with a Putinar's certificate with an a priori degree bound dfixed,and(b), fixed, and (b), \tilde{f}minimizes minimizes \Vert f-\tilde{f}\Vert(whichcanbethe (which can be the \ell_1,, \ell_2or or \ell_\infty−normofthecoefficients)overallpolynomialswithsuchproperties.Computing-norm of the coefficients) over all polynomials with such properties. Computing \tilde{f}_dreducestosolvingasemidefiniteprogramwhoseoptimalvaluealsoprovidesaboundonhowfaris reduces to solving a semidefinite program whose optimal value also provides a bound on how far is f(\y)fromtheunknownoptimalvalue from the unknown optimal value f^*.Thesizeofthesemidefiniteprogramcanbeadaptedtothecomputationalcapabilitiesavailable.Moreover,ifoneusesthe. The size of the semidefinite program can be adapted to the computational capabilities available. Moreover, if one uses the \ell_1−norm,then-norm, then \tilde{f}$ takes a simple and explicit canonical form. Some variations are also discussed.Comment: 25 pages; to appear in Math. Oper. Res; Rapport LAAS no. 1114

    Projection methods in conic optimization

    Get PDF
    There exist efficient algorithms to project a point onto the intersection of a convex cone and an affine subspace. Those conic projections are in turn the work-horse of a range of algorithms in conic optimization, having a variety of applications in science, finance and engineering. This chapter reviews some of these algorithms, emphasizing the so-called regularization algorithms for linear conic optimization, and applications in polynomial optimization. This is a presentation of the material of several recent research articles; we aim here at clarifying the ideas, presenting them in a general framework, and pointing out important techniques
    • 

    corecore