1,951 research outputs found

    KnAC: an approach for enhancing cluster analysis with background knowledge and explanations

    Get PDF
    Pattern discovery in multidimensional data sets has been the subject of research for decades. There exists a wide spectrum of clustering algorithms that can be used for this purpose. However, their practical applications share a common post-clustering phase, which concerns expert-based interpretation and analysis of the obtained results. We argue that this can be the bottleneck in the process, especially in cases where domain knowledge exists prior to clustering. Such a situation requires not only a proper analysis of automatically discovered clusters but also conformance checking with existing knowledge. In this work, we present Knowledge Augmented Clustering (KnAC). Its main goal is to confront expert-based labelling with automated clustering for the sake of updating and refining the former. Our solution is not restricted to any existing clustering algorithm. Instead, KnAC can serve as an augmentation of an arbitrary clustering algorithm, making the approach robust and a model-agnostic improvement of any state-of-the-art clustering method. We demonstrate the feasibility of our method on artificially, reproducible examples and in a real life use case scenario. In both cases, we achieved better results than classic clustering algorithms without augmentation.Comment: Accepted to Applied Intelligenc

    Explainable methods for knowledge graph refinement and exploration via symbolic reasoning

    Get PDF
    Knowledge Graphs (KGs) have applications in many domains such as Finance, Manufacturing, and Healthcare. While recent efforts have created large KGs, their content is far from complete and sometimes includes invalid statements. Therefore, it is crucial to refine the constructed KGs to enhance their coverage and accuracy via KG completion and KG validation. It is also vital to provide human-comprehensible explanations for such refinements, so that humans have trust in the KG quality. Enabling KG exploration, by search and browsing, is also essential for users to understand the KG value and limitations towards down-stream applications. However, the large size of KGs makes KG exploration very challenging. While the type taxonomy of KGs is a useful asset along these lines, it remains insufficient for deep exploration. In this dissertation we tackle the aforementioned challenges of KG refinement and KG exploration by combining logical reasoning over the KG with other techniques such as KG embedding models and text mining. Through such combination, we introduce methods that provide human-understandable output. Concretely, we introduce methods to tackle KG incompleteness by learning exception-aware rules over the existing KG. Learned rules are then used in inferring missing links in the KG accurately. Furthermore, we propose a framework for constructing human-comprehensible explanations for candidate facts from both KG and text. Extracted explanations are used to insure the validity of KG facts. Finally, to facilitate KG exploration, we introduce a method that combines KG embeddings with rule mining to compute informative entity clusters with explanations.Wissensgraphen haben viele Anwendungen in verschiedenen Bereichen, beispielsweise im Finanz- und Gesundheitswesen. Wissensgraphen sind jedoch unvollstĂ€ndig und enthalten auch ungĂŒltige Daten. Hohe Abdeckung und Korrektheit erfordern neue Methoden zur Wissensgraph-Erweiterung und Wissensgraph-Validierung. Beide Aufgaben zusammen werden als Wissensgraph-Verfeinerung bezeichnet. Ein wichtiger Aspekt dabei ist die ErklĂ€rbarkeit und VerstĂ€ndlichkeit von Wissensgraphinhalten fĂŒr Nutzer. In Anwendungen ist darĂŒber hinaus die nutzerseitige Exploration von Wissensgraphen von besonderer Bedeutung. Suchen und Navigieren im Graph hilft dem Anwender, die Wissensinhalte und ihre Limitationen besser zu verstehen. Aufgrund der riesigen Menge an vorhandenen EntitĂ€ten und Fakten ist die Wissensgraphen-Exploration eine Herausforderung. Taxonomische Typsystem helfen dabei, sind jedoch fĂŒr tiefergehende Exploration nicht ausreichend. Diese Dissertation adressiert die Herausforderungen der Wissensgraph-Verfeinerung und der Wissensgraph-Exploration durch algorithmische Inferenz ĂŒber dem Wissensgraph. Sie erweitert logisches Schlussfolgern und kombiniert es mit anderen Methoden, insbesondere mit neuronalen Wissensgraph-Einbettungen und mit Text-Mining. Diese neuen Methoden liefern Ausgaben mit ErklĂ€rungen fĂŒr Nutzer. Die Dissertation umfasst folgende BeitrĂ€ge: Insbesondere leistet die Dissertation folgende BeitrĂ€ge: ‱ Zur Wissensgraph-Erweiterung prĂ€sentieren wir ExRuL, eine Methode zur Revision von Horn-Regeln durch HinzufĂŒgen von Ausnahmebedingungen zum Rumpf der Regeln. Die erweiterten Regeln können neue Fakten inferieren und somit LĂŒcken im Wissensgraphen schließen. Experimente mit großen Wissensgraphen zeigen, dass diese Methode Fehler in abgeleiteten Fakten erheblich reduziert und nutzerfreundliche ErklĂ€rungen liefert. ‱ Mit RuLES stellen wir eine Methode zum Lernen von Regeln vor, die auf probabilistischen ReprĂ€sentationen fĂŒr fehlende Fakten basiert. Das Verfahren erweitert iterativ die aus einem Wissensgraphen induzierten Regeln, indem es neuronale Wissensgraph-Einbettungen mit Informationen aus Textkorpora kombiniert. Bei der Regelgenerierung werden neue Metriken fĂŒr die RegelqualitĂ€t verwendet. Experimente zeigen, dass RuLES die QualitĂ€t der gelernten Regeln und ihrer Vorhersagen erheblich verbessert. ‱ Zur UnterstĂŒtzung der Wissensgraph-Validierung wird ExFaKT vorgestellt, ein Framework zur Konstruktion von ErklĂ€rungen fĂŒr Faktkandidaten. Die Methode transformiert Kandidaten mit Hilfe von Regeln in eine Menge von Aussagen, die leichter zu finden und zu validieren oder widerlegen sind. Die Ausgabe von ExFaKT ist eine Menge semantischer Evidenzen fĂŒr Faktkandidaten, die aus Textkorpora und dem Wissensgraph extrahiert werden. Experimente zeigen, dass die Transformationen die Ausbeute und QualitĂ€t der entdeckten ErklĂ€rungen deutlich verbessert. Die generierten unterstĂŒtzen ErklĂ€rungen unterstĂŒtze sowohl die manuelle Wissensgraph- Validierung durch Kuratoren als auch die automatische Validierung. ‱ Zur UnterstĂŒtzung der Wissensgraph-Exploration wird ExCut vorgestellt, eine Methode zur Erzeugung von informativen EntitĂ€ts-Clustern mit ErklĂ€rungen unter Verwendung von Wissensgraph-Einbettungen und automatisch induzierten Regeln. Eine Cluster-ErklĂ€rung besteht aus einer Kombination von Relationen zwischen den EntitĂ€ten, die den Cluster identifizieren. ExCut verbessert gleichzeitig die Cluster- QualitĂ€t und die Cluster-ErklĂ€rbarkeit durch iteratives VerschrĂ€nken des Lernens von Einbettungen und Regeln. Experimente zeigen, dass ExCut Cluster von hoher QualitĂ€t berechnet und dass die Cluster-ErklĂ€rungen fĂŒr Nutzer informativ sind

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    A Survey on Explainable Anomaly Detection

    Full text link
    In the past two decades, most research on anomaly detection has focused on improving the accuracy of the detection, while largely ignoring the explainability of the corresponding methods and thus leaving the explanation of outcomes to practitioners. As anomaly detection algorithms are increasingly used in safety-critical domains, providing explanations for the high-stakes decisions made in those domains has become an ethical and regulatory requirement. Therefore, this work provides a comprehensive and structured survey on state-of-the-art explainable anomaly detection techniques. We propose a taxonomy based on the main aspects that characterize each explainable anomaly detection technique, aiming to help practitioners and researchers find the explainable anomaly detection method that best suits their needs.Comment: Paper accepted by the ACM Transactions on Knowledge Discovery from Data (TKDD) for publication (preprint version

    Towards Responsible AI for Financial Transactions

    Get PDF
    Author's accepted manuscript.© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The application of AI in finance is increasingly dependent on the principles of responsible AI. These principles-explainability, fairness, privacy, accountability, transparency and soundness form the basis for trust in future AI systems. In this empirical study, we address the first principle by providing an explanation for a deep neural nenvork that is trained on a mixture of numerical, categorical and textual inputs for financial transaction classification. The explanation is achieved through (1) a feature importance analysis using Shapley additive explanations (SHAP) and (2) a hybrid approach of text clustering and decision tree classifiers. We then test the robustness of the model by exposing it to a targeted evasion attack, leveraging the knowledge we gained about the model through the extracted explanation.acceptedVersio

    Classification of Explainable Artificial Intelligence Methods through Their Output Formats

    Get PDF
    Machine and deep learning have proven their utility to generate data-driven models with high accuracy and precision. However, their non-linear, complex structures are often difficult to interpret. Consequently, many scholars have developed a plethora of methods to explain their functioning and the logic of their inferences. This systematic review aimed to organise these methods into a hierarchical classification system that builds upon and extends existing taxonomies by adding a significant dimension—the output formats. The reviewed scientific papers were retrieved by conducting an initial search on Google Scholar with the keywords “explainable artificial intelligence”; “explainable machine learning”; and “interpretable machine learning”. A subsequent iterative search was carried out by checking the bibliography of these articles. The addition of the dimension of the explanation format makes the proposed classification system a practical tool for scholars, supporting them to select the most suitable type of explanation format for the problem at hand. Given the wide variety of challenges faced by researchers, the existing XAI methods provide several solutions to meet the requirements that differ considerably between the users, problems and application fields of artificial intelligence (AI). The task of identifying the most appropriate explanation can be daunting, thus the need for a classification system that helps with the selection of methods. This work concludes by critically identifying the limitations of the formats of explanations and by providing recommendations and possible future research directions on how to build a more generally applicable XAI method. Future work should be flexible enough to meet the many requirements posed by the widespread use of AI in several fields, and the new regulation

    Artificial Intelligence and Machine Learning: A Perspective on Integrated Systems Opportunities and Challenges for Multi-Domain Operations

    Get PDF
    This paper provides a perspective on historical background, innovation and applications of Artificial Intelligence (AI) and Machine Learning (ML), data successes and systems challenges, national security interests, and mission opportunities for system problems. AI and ML today are used interchangeably, or together as AI/ML, and are ubiquitous among many industries and applications. The recent explosion, based on a confluence of new ML algorithms, large data sets, and fast and cheap computing, has demonstrated impressive results in classification and regression and used for prediction, and decision-making. Yet, AI/ML today lacks a precise definition, and as a technical discipline, it has grown beyond its origins in computer science. Even though there are impressive feats, primarily of ML, there still is much work needed in order to see the systems benefits of AI, such as perception, reasoning, planning, acting, learning, communicating, and abstraction. Recent national security interests in AI/ML have focused on problems including multidomain operations (MDO), and this has renewed the focus on a systems view of AI/ML. This paper will address the solutions for systems from an AI/ML perspective and that these solutions will draw from methods in AI and ML, as well as computational methods in control, estimation, communication, and information theory, as in the early days of cybernetics. Along with the focus on developing technology, this paper will also address the challenges of integrating these AI/ML systems for warfare
    • 

    corecore