29,075 research outputs found

    Acoustic data-driven lexicon learning based on a greedy pronunciation selection framework

    Full text link
    Speech recognition systems for irregularly-spelled languages like English normally require hand-written pronunciations. In this paper, we describe a system for automatically obtaining pronunciations of words for which pronunciations are not available, but for which transcribed data exists. Our method integrates information from the letter sequence and from the acoustic evidence. The novel aspect of the problem that we address is the problem of how to prune entries from such a lexicon (since, empirically, lexicons with too many entries do not tend to be good for ASR performance). Experiments on various ASR tasks show that, with the proposed framework, starting with an initial lexicon of several thousand words, we are able to learn a lexicon which performs close to a full expert lexicon in terms of WER performance on test data, and is better than lexicons built using G2P alone or with a pruning criterion based on pronunciation probability

    Phoneme and sentence-level ensembles for speech recognition

    Get PDF
    We address the question of whether and how boosting and bagging can be used for speech recognition. In order to do this, we compare two different boosting schemes, one at the phoneme level and one at the utterance level, with a phoneme-level bagging scheme. We control for many parameters and other choices, such as the state inference scheme used. In an unbiased experiment, we clearly show that the gain of boosting methods compared to a single hidden Markov model is in all cases only marginal, while bagging significantly outperforms all other methods. We thus conclude that bagging methods, which have so far been overlooked in favour of boosting, should be examined more closely as a potentially useful ensemble learning technique for speech recognition

    Speaker diarization of multi-party conversations using participants role information: political debates and professional meetings

    Get PDF
    Speaker Diarization aims at inferring who spoke when in an audio stream and involves two simultaneous unsupervised tasks: (1) the estimation of the number of speakers, and (2) the association of speech segments to each speaker. Most of the recent efforts in the domain have addressed the problem using machine learning techniques or statistical methods (for a review see [11]) ignoring the fact that the data consists of instances of human conversations

    Subword and Crossword Units for CTC Acoustic Models

    Full text link
    This paper proposes a novel approach to create an unit set for CTC based speech recognition systems. By using Byte Pair Encoding we learn an unit set of an arbitrary size on a given training text. In contrast to using characters or words as units this allows us to find a good trade-off between the size of our unit set and the available training data. We evaluate both Crossword units, that may span multiple word, and Subword units. By combining this approach with decoding methods using a separate language model we are able to achieve state of the art results for grapheme based CTC systems.Comment: Current version accepted at Interspeech 201

    No Need for a Lexicon? Evaluating the Value of the Pronunciation Lexica in End-to-End Models

    Full text link
    For decades, context-dependent phonemes have been the dominant sub-word unit for conventional acoustic modeling systems. This status quo has begun to be challenged recently by end-to-end models which seek to combine acoustic, pronunciation, and language model components into a single neural network. Such systems, which typically predict graphemes or words, simplify the recognition process since they remove the need for a separate expert-curated pronunciation lexicon to map from phoneme-based units to words. However, there has been little previous work comparing phoneme-based versus grapheme-based sub-word units in the end-to-end modeling framework, to determine whether the gains from such approaches are primarily due to the new probabilistic model, or from the joint learning of the various components with grapheme-based units. In this work, we conduct detailed experiments which are aimed at quantifying the value of phoneme-based pronunciation lexica in the context of end-to-end models. We examine phoneme-based end-to-end models, which are contrasted against grapheme-based ones on a large vocabulary English Voice-search task, where we find that graphemes do indeed outperform phonemes. We also compare grapheme and phoneme-based approaches on a multi-dialect English task, which once again confirm the superiority of graphemes, greatly simplifying the system for recognizing multiple dialects
    corecore