145,162 research outputs found

    Ontological clarity and comprehension in health data models

    Get PDF
    Conceptual modeling forms an important part of systems analysis. If this is done incorrectly or incompletely, there can be serious implications for the resultant system, specifically in terms of rework and useability. One approach to improving the conceptual modelling process is to evaluate how well the model represents reality. Emergence of the Bunge-Wand-Weber (BWW) ontological model introduced a platform to classify and compare the grammar of conceptual modelling languages. This work applies the BWW theory to a real world example in the health arena. The general practice computing group data model was developed using the Barker Entity Relationship Modelling technique. We describe an experiment, grounded in ontological theory, which evaluates how well the GPCG data model is understood by domain experts. The results show that with the exception of the use of entities to represent events, the raw model is better understood by domain expert

    A knowledge-based decision support system for roofing materials selection and cost estimating: a conceptual framework and data modelling

    Get PDF
    A plethora of materials is available to the modern day house designer but selecting the appropriate material is a complex task. It requires synthesising a multitude of performance criteria such as initial cost, maintenance cost, thermal performance and sustainability among others. This research aims to develop a Knowledge-based Decision support System for Material Selection (KDSMS) that facilitates the selection of optimal material for different sub elements of a roof design. The proposed system also has a facility for estimating roof cost based on the identified criteria. This paper presents the data modelling conceptual framework for the proposed system. The roof sub elements are modelled on the Building Cost Information Service (BCIS) Standard Form of Cost Analysis. This model consists of a knowledge base and a database to store different types of roofing materials with their corresponding performance characteristics and rankings. The system s knowledge is elicited from an extensive review of literature and the use of a domain expert forum. The proposed system employs the multi criteria decision method of TOPSIS (Technique of ranking Preferences by Similarity to the Ideal Solution), to resolve the materials selection and optimisation problem. The KDSMS is currently being developed for the housing sector of Northern Ireland

    Towards automated knowledge-based mapping between individual conceptualisations to empower personalisation of Geospatial Semantic Web

    No full text
    Geospatial domain is characterised by vagueness, especially in the semantic disambiguation of the concepts in the domain, which makes defining universally accepted geo- ontology an onerous task. This is compounded by the lack of appropriate methods and techniques where the individual semantic conceptualisations can be captured and compared to each other. With multiple user conceptualisations, efforts towards a reliable Geospatial Semantic Web, therefore, require personalisation where user diversity can be incorporated. The work presented in this paper is part of our ongoing research on applying commonsense reasoning to elicit and maintain models that represent users' conceptualisations. Such user models will enable taking into account the users' perspective of the real world and will empower personalisation algorithms for the Semantic Web. Intelligent information processing over the Semantic Web can be achieved if different conceptualisations can be integrated in a semantic environment and mismatches between different conceptualisations can be outlined. In this paper, a formal approach for detecting mismatches between a user's and an expert's conceptual model is outlined. The formalisation is used as the basis to develop algorithms to compare models defined in OWL. The algorithms are illustrated in a geographical domain using concepts from the SPACE ontology developed as part of the SWEET suite of ontologies for the Semantic Web by NASA, and are evaluated by comparing test cases of possible user misconceptions

    Expressing business rules : a fact based approach : a thesis presented in partial fulfilment of the requirements for the degree of Master of Philosophy in Information Systems at Massey University, Palmerston North, New Zealand

    Get PDF
    Numerous industry surveys have suggested that many IT projects still end in failure. Incomplete, ambiguous and inaccurate specifications are cited as a major causal factor. Traditional techniques for specifying data requirements often lack the expressiveness with which to model subtle but common features within organisations. As a consequence, categories of business rules that determine the structure and behaviour of organisations may not be captured until the latter stages of the systems development lifecycle. A fact-based technique called Object Role Modelling (ORM) has been investigated as an altemative approach for specifying data requirements. The technique's ability to capture and represent a wide range of data requirements rigorously, but still in a form comprehensible to business people, could provide a powerful tool for analysts. In this report, ORM constructs have been synthesised with the concepts and definitions provided by the Business Rules Group (BRG), who have produced a detailed taxonomy of business rule categories. In doing so, business rules discovered in an organisation can be expressed in a form that is meaningful to both analysts and business people. Exploiting the expressive simplicity of a conceptual modelling technique to articulate an organisation's business rules could help to fill a significant requirements gap

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector

    A survey of agent-oriented methodologies

    Get PDF
    This article introduces the current agent-oriented methodologies. It discusses what approaches have been followed (mainly extending existing object oriented and knowledge engineering methodologies), the suitability of these approaches for agent modelling, and some conclusions drawn from the survey

    Towards the Development of a Simulator for Investigating the Impact of People Management Practices on Retail Performance

    Get PDF
    Often models for understanding the impact of management practices on retail performance are developed under the assumption of stability, equilibrium and linearity, whereas retail operations are considered in reality to be dynamic, non-linear and complex. Alternatively, discrete event and agent-based modelling are approaches that allow the development of simulation models of heterogeneous non-equilibrium systems for testing out different scenarios. When developing simulation models one has to abstract and simplify from the real world, which means that one has to try and capture the 'essence' of the system required for developing a representation of the mechanisms that drive the progression in the real system. Simulation models can be developed at different levels of abstraction. To know the appropriate level of abstraction for a specific application is often more of an art than a science. We have developed a retail branch simulation model to investigate which level of model accuracy is required for such a model to obtain meaningful results for practitioners.Comment: 24 pages, 7 figures, 6 tables, Journal of Simulation 201

    Development and testing of a risk indexing framework to determine field-scale critical source areas of faecal bacteria on grassland.

    Get PDF
    This paper draws on lessons from a UK case study in the management of diffuse microbial pollution from grassland farm systems in the Taw catchment, south west England. We report on the development and preliminary testing of a field-scale faecal indicator organism risk indexing tool (FIORIT). This tool aims to prioritise those fields most vulnerable in terms of their risk of contributing FIOs to water. FIORIT risk indices were related to recorded microbial water quality parameters (faecal coliforms [FC] and intestinal enterococci [IE]) to provide a concurrent on-farm evaluation of the tool. There was a significant upward trend in Log[FC] and Log[IE] values with FIORIT risk score classification (r2 =0.87 and 0.70, respectively and P<0.01 for both FIOs). The FIORIT was then applied to 162 representative grassland fields through different seasons for ten farms in the case study catchment to determine the distribution of on-farm spatial and temporal risk. The high risk fields made up only a small proportion (1%, 2%, 2% and 3% for winter, spring, summer and autumn, respectively) of the total number of fields assessed (and less than 10% of the total area), but the likelihood of the hydrological connection of high FIO source areas to receiving watercourses makes them a priority for mitigation efforts. The FIORIT provides a preliminary and evolving mechanism through which we can combine risk assessment with risk communication to end-users and provides a framework for prioritising future empirical research. Continued testing of FIORIT across different geographical areas under both low and high flow conditions is now needed to initiate its long term development into a robust indexing tool

    Detecting Mismatches between a User's and an Expert's Conceptualisations

    No full text
    The work presented in this paper is part of our ongoing research on applying commonsense reasoning to elicit and maintain models that represent users' conceptualisations. Such user models will enable taking into account the users' perspective of the world and will empower personalisation algorithms for the Semantic Web. A formal approach for detecting mismatches between a user's and an expert's conceptual model is outlined. The formalisation is used as the basis to develop algorithms to compare two conceptualisations defined in OWL. The algorithms are illustrated in a geographical domain using a space ontology developed at NASA, and have been tested by simulating possible user misconceptions
    corecore