80 research outputs found

    Performance measurement and evaluation of time-shared operating systems

    Get PDF
    Time-shared, virtual memory systems are very complex and changes in their performance may be caused by many factors - by variations in the workload as well as changes in system configuration. The evaluation of these systems can thus best be carried out by linking results obtained from a planned programme of measurements, taken on the system, to some model of it. Such a programme of measurements is best carried out under conditions in which all the parameters likely to affect the system's performance are reproducible, and under the control of the experimenter. In order that this be possible the workload used must be simulated and presented to the target system through some form of automatic workload driver. A case study of such a methodology is presented in which the system (in this case the Edinburgh Multi-Access System) is monitored during a controlled experiment (designed and analysed using standard techniques in common use in many other branches of experimental science) and the results so obtained used to calibrate and validate a simple simulation model of the system. This model is then used in further investigation of the effect of certain system parameters upon the system performance. The factors covered by this exercise include the effect of varying: main memory size, process loading algorithm and secondary memory characteristics

    Working Sets Past and Present

    Get PDF

    Random rerouting for differentiated QoS in sensor networks.

    Get PDF
    Sensor Networks consist of spatially distributed sensors which monitor an environment, and which are connected to some sinks or backbone system to which the sensor data is being forwarded. In many cases, the sensor nodes themselves can serve as intermediate nodes for data coming from other nodes, on the way to the sinks. Much of the traffic carried by sensor networks will originate from routine measurements or observations by sensors which monitor a particular situation, such as the temperature and humidity in a room or the infrared observation of the perimeter of a house, so that the volume of routine traffic resulting from such observations may be quite high. When important and unusual events occur, such as a sudden fire breaking out or the arrival of an intruder, it will be necessary to convey this new information very urgently through the network to a designated set of sink nodes where this information can be processed and dealt with. This paper addresses the important challenge of avoiding that the volume of routine background traffic may create delays or bottlenecks that impede the rapid delivery of high priority traffic resulting from the unusual events. Specifically we propose a novel technique, the "Randomized Re-Routing Algorithm (RRR)", which detects the presence of novel events in a distributed manner, and dynamically disperses the background traffic towards secondary paths in the network, while creating a "fast track path" which provides better delay and better QoS for the high priority traffic which is carrying the new information. When the surge of new information has subsided, this is again detected by the nodes and the nodes progressively revert to best QoS or shortest path routing for all the ongoing traffic. The proposed technique is evaluated using a mathematical model as well as simulations, and is also compared with a standard node by node priority scheduling technique

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments

    Introduction to the LaRC central scientific computing complex

    Get PDF
    The computers and associated equipment that make up the Central Scientific Computing Complex of the Langley Research Center are briefly described. The electronic networks that provide access to the various components of the complex and a number of areas that can be used by Langley and contractors staff for special applications (scientific visualization, image processing, software engineering, and grid generation) are also described. Flight simulation facilities that use the central computers are described. Management of the complex, procedures for its use, and available services and resources are discussed. This document is intended for new users of the complex, for current users who wish to keep appraised of changes, and for visitors who need to understand the role of central scientific computers at Langley

    Three-dimensional point-cloud room model in room acoustics simulations

    Get PDF
    corecore