415 research outputs found

    Hybrid LSTM and Encoder-Decoder Architecture for Detection of Image Forgeries

    Full text link
    With advanced image journaling tools, one can easily alter the semantic meaning of an image by exploiting certain manipulation techniques such as copy-clone, object splicing, and removal, which mislead the viewers. In contrast, the identification of these manipulations becomes a very challenging task as manipulated regions are not visually apparent. This paper proposes a high-confidence manipulation localization architecture which utilizes resampling features, Long-Short Term Memory (LSTM) cells, and encoder-decoder network to segment out manipulated regions from non-manipulated ones. Resampling features are used to capture artifacts like JPEG quality loss, upsampling, downsampling, rotation, and shearing. The proposed network exploits larger receptive fields (spatial maps) and frequency domain correlation to analyze the discriminative characteristics between manipulated and non-manipulated regions by incorporating encoder and LSTM network. Finally, decoder network learns the mapping from low-resolution feature maps to pixel-wise predictions for image tamper localization. With predicted mask provided by final layer (softmax) of the proposed architecture, end-to-end training is performed to learn the network parameters through back-propagation using ground-truth masks. Furthermore, a large image splicing dataset is introduced to guide the training process. The proposed method is capable of localizing image manipulations at pixel level with high precision, which is demonstrated through rigorous experimentation on three diverse datasets

    Passive Techniques for Detecting and Locating Manipulations in Digital Images

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, leída el 19-11-2020El numero de camaras digitales integradas en dispositivos moviles as como su uso en la vida cotidiana esta en continuo crecimiento. Diariamente gran cantidad de imagenes digitales, generadas o no por este tipo de dispositivos, circulan en Internet o son utilizadas como evidencias o pruebas en procesos judiciales. Como consecuencia, el analisis forense de imagenes digitales cobra importancia en multitud de situaciones de la vida real. El analisis forense de imagenes digitales se divide en dos grandes ramas: autenticidad de imagenes digitales e identificacion de la fuente de adquisicion de una imagen. La primera trata de discernir si una imagen ha sufrido algun procesamiento posterior al de su creacion, es decir, que no haya sido manipulada. La segunda pretende identificar el dispositivo que genero la imagen digital. La verificacion de la autenticidad de imagenes digitales se puedellevar a cabo mediante tecnicas activas y tecnicas pasivas de analisis forense. Las tecnicas activas se fundamentan en que las imagenes digitales cuentan con \marcas" presentes desde su creacion, de forma que cualquier tipo de alteracion que se realice con posterioridad a su generacion, modificara las mismas, y, por tanto, permitiran detectar si ha existido un posible post-proceso o manipulacion...The number of digital cameras integrated into mobile devices as well as their use in everyday life is continuously growing. Every day a large number of digital images, whether generated by this type of device or not, circulate on the Internet or are used as evidence in legal proceedings. Consequently, the forensic analysis of digital images becomes important in many real-life situations. Forensic analysis of digital images is divided into two main branches: authenticity of digital images and identi cation of the source of acquisition of an image. The first attempts to discern whether an image has undergone any processing subsequent to its creation, i.e. that it has not been manipulated. The second aims to identify the device that generated the digital image. Verification of the authenticity of digital images can be carried out using both active and passive forensic analysis techniques. The active techniques are based on the fact that the digital images have "marks"present since their creation so that any type of alteration made after their generation will modify them, and therefore will allow detection if there has been any possible post-processing or manipulation. On the other hand, passive techniques perform the analysis of authenticity by extracting characteristics from the image...Fac. de InformáticaTRUEunpu

    A robust forgery detection method for copy-move and splicing attacks in images

    Get PDF
    Internet of Things (IoT) image sensors, social media, and smartphones generate huge volumes of digital images every day. Easy availability and usability of photo editing tools have made forgery attacks, primarily splicing and copy-move attacks, effortless, causing cybercrimes to be on the rise. While several models have been proposed in the literature for detecting these attacks, the robustness of those models has not been investigated when (i) a low number of tampered images are available for model building or (ii) images from IoT sensors are distorted due to image rotation or scaling caused by unwanted or unexpected changes in sensors' physical set-up. Moreover, further improvement in detection accuracy is needed for real-word security management systems. To address these limitations, in this paper, an innovative image forgery detection method has been proposed based on Discrete Cosine Transformation (DCT) and Local Binary Pattern (LBP) and a new feature extraction method using the mean operator. First, images are divided into non-overlapping fixed size blocks and 2D block DCT is applied to capture changes due to image forgery. Then LBP is applied to the magnitude of the DCT array to enhance forgery artifacts. Finally, the mean value of a particular cell across all LBP blocks is computed, which yields a fixed number of features and presents a more computationally efficient method. Using Support Vector Machine (SVM), the proposed method has been extensively tested on four well known publicly available gray scale and color image forgery datasets, and additionally on an IoT based image forgery dataset that we built. Experimental results reveal the superiority of our proposed method over recent state-of-the-art methods in terms of widely used performance metrics and computational time and demonstrate robustness against low availability of forged training samples.This research was funded by Research Priority Area (RPA) scholarship of Federation University Australia

    An Evaluation of Popular Copy-Move Forgery Detection Approaches

    Full text link
    A copy-move forgery is created by copying and pasting content within the same image, and potentially post-processing it. In recent years, the detection of copy-move forgeries has become one of the most actively researched topics in blind image forensics. A considerable number of different algorithms have been proposed focusing on different types of postprocessed copies. In this paper, we aim to answer which copy-move forgery detection algorithms and processing steps (e.g., matching, filtering, outlier detection, affine transformation estimation) perform best in various postprocessing scenarios. The focus of our analysis is to evaluate the performance of previously proposed feature sets. We achieve this by casting existing algorithms in a common pipeline. In this paper, we examined the 15 most prominent feature sets. We analyzed the detection performance on a per-image basis and on a per-pixel basis. We created a challenging real-world copy-move dataset, and a software framework for systematic image manipulation. Experiments show, that the keypoint-based features SIFT and SURF, as well as the block-based DCT, DWT, KPCA, PCA and Zernike features perform very well. These feature sets exhibit the best robustness against various noise sources and downsampling, while reliably identifying the copied regions.Comment: Main paper: 14 pages, supplemental material: 12 pages, main paper appeared in IEEE Transaction on Information Forensics and Securit

    Aligned and Non-Aligned Double JPEG Detection Using Convolutional Neural Networks

    Full text link
    Due to the wide diffusion of JPEG coding standard, the image forensic community has devoted significant attention to the development of double JPEG (DJPEG) compression detectors through the years. The ability of detecting whether an image has been compressed twice provides paramount information toward image authenticity assessment. Given the trend recently gained by convolutional neural networks (CNN) in many computer vision tasks, in this paper we propose to use CNNs for aligned and non-aligned double JPEG compression detection. In particular, we explore the capability of CNNs to capture DJPEG artifacts directly from images. Results show that the proposed CNN-based detectors achieve good performance even with small size images (i.e., 64x64), outperforming state-of-the-art solutions, especially in the non-aligned case. Besides, good results are also achieved in the commonly-recognized challenging case in which the first quality factor is larger than the second one.Comment: Submitted to Journal of Visual Communication and Image Representation (first submission: March 20, 2017; second submission: August 2, 2017

    Image forgery detection using textural features and deep learning

    Full text link
    La croissance exponentielle et les progrès de la technologie ont rendu très pratique le partage de données visuelles, d'images et de données vidéo par le biais d’une vaste prépondérance de platesformes disponibles. Avec le développement rapide des technologies Internet et multimédia, l’efficacité de la gestion et du stockage, la rapidité de transmission et de partage, l'analyse en temps réel et le traitement des ressources multimédias numériques sont progressivement devenus un élément indispensable du travail et de la vie de nombreuses personnes. Sans aucun doute, une telle croissance technologique a rendu le forgeage de données visuelles relativement facile et réaliste sans laisser de traces évidentes. L'abus de ces données falsifiées peut tromper le public et répandre la désinformation parmi les masses. Compte tenu des faits mentionnés ci-dessus, la criminalistique des images doit être utilisée pour authentifier et maintenir l'intégrité des données visuelles. Pour cela, nous proposons une technique de détection passive de falsification d'images basée sur les incohérences de texture et de bruit introduites dans une image du fait de l'opération de falsification. De plus, le réseau de détection de falsification d'images (IFD-Net) proposé utilise une architecture basée sur un réseau de neurones à convolution (CNN) pour classer les images comme falsifiées ou vierges. Les motifs résiduels de texture et de bruit sont extraits des images à l'aide du motif binaire local (LBP) et du modèle Noiseprint. Les images classées comme forgées sont ensuite utilisées pour mener des expériences afin d'analyser les difficultés de localisation des pièces forgées dans ces images à l'aide de différents modèles de segmentation d'apprentissage en profondeur. Les résultats expérimentaux montrent que l'IFD-Net fonctionne comme les autres méthodes de détection de falsification d'images sur l'ensemble de données CASIA v2.0. Les résultats discutent également des raisons des difficultés de segmentation des régions forgées dans les images du jeu de données CASIA v2.0.The exponential growth and advancement of technology have made it quite convenient for people to share visual data, imagery, and video data through a vast preponderance of available platforms. With the rapid development of Internet and multimedia technologies, performing efficient storage and management, fast transmission and sharing, real-time analysis, and processing of digital media resources has gradually become an indispensable part of many people’s work and life. Undoubtedly such technological growth has made forging visual data relatively easy and realistic without leaving any obvious visual clues. Abuse of such tampered data can deceive the public and spread misinformation amongst the masses. Considering the facts mentioned above, image forensics must be used to authenticate and maintain the integrity of visual data. For this purpose, we propose a passive image forgery detection technique based on textural and noise inconsistencies introduced in an image because of the tampering operation. Moreover, the proposed Image Forgery Detection Network (IFD-Net) uses a Convolution Neural Network (CNN) based architecture to classify the images as forged or pristine. The textural and noise residual patterns are extracted from the images using Local Binary Pattern (LBP) and the Noiseprint model. The images classified as forged are then utilized to conduct experiments to analyze the difficulties in localizing the forged parts in these images using different deep learning segmentation models. Experimental results show that both the IFD-Net perform like other image forgery detection methods on the CASIA v2.0 dataset. The results also discuss the reasons behind the difficulties in segmenting the forged regions in the images of the CASIA v2.0 dataset

    Measuring trustworthiness of image data in the internet of things environment

    Get PDF
    Internet of Things (IoT) image sensors generate huge volumes of digital images every day. However, easy availability and usability of photo editing tools, the vulnerability in communication channels and malicious software have made forgery attacks on image sensor data effortless and thus expose IoT systems to cyberattacks. In IoT applications such as smart cities and surveillance systems, the smooth operation depends on sensors’ sharing data with other sensors of identical or different types. Therefore, a sensor must be able to rely on the data it receives from other sensors; in other words, data must be trustworthy. Sensors deployed in IoT applications are usually limited to low processing and battery power, which prohibits the use of complex cryptography and security mechanism and the adoption of universal security standards by IoT device manufacturers. Hence, estimating the trust of the image sensor data is a defensive solution as these data are used for critical decision-making processes. To our knowledge, only one published work has estimated the trustworthiness of digital images applied to forensic applications. However, that study’s method depends on machine learning prediction scores returned by existing forensic models, which limits its usage where underlying forensics models require different approaches (e.g., machine learning predictions, statistical methods, digital signature, perceptual image hash). Multi-type sensor data correlation and context awareness can improve the trust measurement, which is absent in that study’s model. To address these issues, novel techniques are introduced to accurately estimate the trustworthiness of IoT image sensor data with the aid of complementary non-imagery (numeric) data-generating sensors monitoring the same environment. The trust estimation models run in edge devices, relieving sensors from computationally intensive tasks. First, to detect local image forgery (splicing and copy-move attacks), an innovative image forgery detection method is proposed based on Discrete Cosine Transformation (DCT), Local Binary Pattern (LBP) and a new feature extraction method using the mean operator. Using Support Vector Machine (SVM), the proposed method is extensively tested on four well-known publicly available greyscale and colour image forgery datasets and on an IoT-based image forgery dataset that we built. Experimental results reveal the superiority of our proposed method over recent state-of-the-art methods in terms of widely used performance metrics and computational time and demonstrate robustness against low availability of forged training samples. Second, a robust trust estimation framework for IoT image data is proposed, leveraging numeric data-generating sensors deployed in the same area of interest (AoI) in an indoor environment. As low-cost sensors allow many IoT applications to use multiple types of sensors to observe the same AoI, the complementary numeric data of one sensor can be exploited to measure the trust value of another image sensor’s data. A theoretical model is developed using Shannon’s entropy to derive the uncertainty associated with an observed event and Dempster-Shafer theory (DST) for decision fusion. The proposed model’s efficacy in estimating the trust score of image sensor data is analysed by observing a fire event using IoT image and temperature sensor data in an indoor residential setup under different scenarios. The proposed model produces highly accurate trust scores in all scenarios with authentic and forged image data. Finally, as the outdoor environment varies dynamically due to different natural factors (e.g., lighting condition variations in day and night, presence of different objects, smoke, fog, rain, shadow in the scene), a novel trust framework is proposed that is suitable for the outdoor environments with these contextual variations. A transfer learning approach is adopted to derive the decision about an observation from image sensor data, while also a statistical approach is used to derive the decision about the same observation from numeric data generated from other sensors deployed in the same AoI. These decisions are then fused using CertainLogic and compared with DST-based fusion. A testbed was set up using Raspberry Pi microprocessor, image sensor, temperature sensor, edge device, LoRa nodes, LoRaWAN gateway and servers to evaluate the proposed techniques. The results show that CertainLogic is more suitable for measuring the trustworthiness of image sensor data in an outdoor environment.Doctor of Philosoph
    • …
    corecore