2,012 research outputs found

    Dynamic Modeling and Simulation of a Rotating Single Link Flexible Robotic Manipulator Subject to Quick Stops

    Get PDF
    Single link robotic manipulators are extensively used in industry and research operations. The main design requirement of such manipulators is to minimize link dynamic deflection and its active end vibrations, and obtain high position accuracy during its high speed motion. To achieve these requirements, accurate mathematical modeling and simulation of the initial design, to increase system stability and precision and to obtain very small amplitudes of vibration, should be considered. In this paper the modeling of such robotic arm with a rigid guide and a flexible extensible link subject to quick stops after each complete revolution is considered and its dynamical behavior analyzed. The extensible link which rotates with constant angular velocity has one end constrained to a predefined trajectory. The constrained trajectory allows trajectory control and obstacle avoidance for the active end of the robotic arm. The dynamic evolution of the system is investigated and the flexural response of the flexible link analyzed under the combined effect of clearance and flexibility.

    Identification of geometrical and elastostatic parameters of heavy industrial robots

    Get PDF
    The paper focuses on the stiffness modeling of heavy industrial robots with gravity compensators. The main attention is paid to the identification of geometrical and elastostatic parameters and calibration accuracy. To reduce impact of the measurement errors, the set of manipulator configurations for calibration experiments is optimized with respect to the proposed performance measure related to the end-effector position accuracy. Experimental results are presented that illustrate the advantages of the developed technique.Comment: arXiv admin note: substantial text overlap with arXiv:1311.667

    High speed, precision motion strategies for lightweight structures

    Get PDF
    Research on space telerobotics is summarized. Adaptive control experiments on the Robotic Arm, Large and Flexible (RALF) were preformed and are documented, along with a joint controller design for the Small Articulated Manipulator (SAM), which is mounted on the RALF. A control algorithm is described as a robust decentralized adaptive control based on a bounded uncertainty approach. Dynamic interactions between SAM and RALF are examined. Unstability of the manipulator is studied from the perspective that the inertial forces generated could actually be used to more rapidly damp out the flexible manipulator's vibration. Currently being studied is the modeling of the constrained dynamics of flexible arms

    Industry-oriented Performance Measures for Design of Robot Calibration Experiment

    Get PDF
    The paper focuses on the accuracy improvement of geometric and elasto-static calibration of industrial robots. It proposes industry-oriented performance measures for the calibration experiment design. They are based on the concept of manipulator test-pose and referred to the end-effector location accuracy after application of the error compensation algorithm, which implements the identified parameters. This approach allows the users to define optimal measurement configurations for robot calibration for given work piece location and machining forces/torques. These performance measures are suitable for comparing the calibration plans for both simple and complex trajectories to be performed. The advantages of the developed techniques are illustrated by an example that deals with machining using robotic manipulator

    Developing Intuitive, Closed-Loop, Teleoperative Control of Continuum Robotic Systems

    Get PDF
    This thesis presents a series of related new results in the area of continuum robot teleoperation and control. A new nonlinear control strategy for the teleoperation of extensible continuum robots is described. Previous attempts at controlling continuum robots have proven difficult due to the complexity of their system dynamics. Taking advantage of a previously developed dynamic model for a three-section, planar, continuum manipulator, we present an adaptation control-inspired law. Simulation and experimental results of a teleoperation scheme between a master device and an extensible continuum slave manipulator using the new controller are presented. Two novel user interface approaches to the teleoperation of continuum robots are also presented. In the first, mappings from a six Degree-of-Freedom (DoF) rigid-link robotic arm to a nine degree-of-freedom continuum robot are synthesized, analyzed, and implemented, focusing on their potential for creating an intuitive operational interface. Tests were conducted across a range of planar and spatial tasks, using fifteen participant operators. The results demonstrate the feasibility of the approach, and suggest that it can be effective independent of the prior robotics, gaming, or teleoperative experience of the operator. In the second teleoperation approach, a novel nine degree-of-freedom input device for the teleoperation of extensible continuum robots is introduced. As opposed to previous works limited by kinematically dissimilar master devices or restricted degrees-of-freedom, the device is capable of achieving configurations identical to a three section continuum robot, and simplifying the control of such manipulators. The thesis discusses the design of the control device and its construction. The implementation of the new master device is discussed and the effectiveness of the system is reported

    Dynamic Control of Mobile Multirobot Systems: The Cluster Space Formulation

    Get PDF
    The formation control technique called cluster space control promotes simplified specification and monitoring of the motion of mobile multirobot systems of limited size. Previous paper has established the conceptual foundation of this approach and has experimentally verified and validated its use for various systems implementing kinematic controllers. In this paper, we briefly review the definition of the cluster space framework and introduce a new cluster space dynamic model. This model represents the dynamics of the formation as a whole as a function of the dynamics of the member robots. Given this model, generalized cluster space forces can be applied to the formation, and a Jacobian transpose controller can be implemented to transform cluster space compensation forces into robot-level forces to be applied to the robots in the formation. Then, a nonlinear model-based partition controller is proposed. This controller cancels out the formation dynamics and effectively decouples the cluster space variables. Computer simulations and experimental results using three autonomous surface vessels and four land rovers show the effectiveness of the approach. Finally, sensitivity to errors in the estimation of cluster model parameters is analyzed.Fil: Mas, Ignacio Agustin. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kitts, Christopher. Santa Clara University; Estados Unido
    • …
    corecore