3,204 research outputs found

    An Optimal Lower Bound for Buffer Management in Multi-Queue Switches

    Get PDF
    In the online packet buffering problem (also known as the unweighted FIFO variant of buffer management), we focus on a single network packet switching device with several input ports and one output port. This device forwards unit-size, unit-value packets from input ports to the output port. Buffers attached to input ports may accumulate incoming packets for later transmission; if they cannot accommodate all incoming packets, their excess is lost. A packet buffering algorithm has to choose from which buffers to transmit packets in order to minimize the number of lost packets and thus maximize the throughput. We present a tight lower bound of e/(e-1) ~ 1.582 on the competitive ratio of the throughput maximization, which holds even for fractional or randomized algorithms. This improves the previously best known lower bound of 1.4659 and matches the performance of the algorithm Random Schedule. Our result contradicts the claimed performance of the algorithm Random Permutation; we point out a flaw in its original analysis

    FAST TCP: Motivation, Architecture, Algorithms, Performance

    Get PDF
    We describe FAST TCP, a new TCP congestion control algorithm for high-speed long-latency networks, from design to implementation. We highlight the approach taken by FAST TCP to address the four difficulties which the current TCP implementation has at large windows. We describe the architecture and summarize some of the algorithms implemented in our prototype. We characterize its equilibrium and stability properties. We evaluate it experimentally in terms of throughput, fairness, stability, and responsiveness

    The Longest Queue Drop Policy for Shared-Memory Switches is 1.5-competitive

    Full text link
    We consider the Longest Queue Drop memory management policy in shared-memory switches consisting of NN output ports. The shared memory of size MNM\geq N may have an arbitrary number of input ports. Each packet may be admitted by any incoming port, but must be destined to a specific output port and each output port may be used by only one queue. The Longest Queue Drop policy is a natural online strategy used in directing the packet flow in buffering problems. According to this policy and assuming unit packet values and cost of transmission, every incoming packet is accepted, whereas if the shared memory becomes full, one or more packets belonging to the longest queue are preempted, in order to make space for the newly arrived packets. It was proved in 2001 [Hahne et al., SPAA '01] that the Longest Queue Drop policy is 2-competitive and at least 2\sqrt{2}-competitive. It remained an open question whether a (2-\epsilon) upper bound for the competitive ratio of this policy could be shown, for any positive constant \epsilon. We show that the Longest Queue Drop online policy is 1.5-competitive

    Real-time detection of grid bulk transfer traffic

    Get PDF
    The current practice of physical science research has yielded a continuously growing demand for interconnection network bandwidth to support the sharing of large datasets. Academic research networks and internet service providers have provisioned their networks to handle this type of load, which generates prolonged, high-volume traffic between nodes on the network. Maintenance of QoS for all network users demands that the onset of these (Grid bulk) transfers be detected to enable them to be reengineered through resources specifically provisioned to handle this type of traffic. This paper describes a real-time detector that operates at full-line-rate on Gb/s links, operates at high connection rates, and can track the use of ephemeral or non-standard ports
    corecore