7,988 research outputs found

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Experimental Evaluation of Wireless Mesh Networks: A Case Study and Comparison

    Get PDF
    Price of WiFi devices has decreased dramatically in recent years, while new standards, as 802.11n, have multiplied its performance. This has fostered the deployment of Wireless Mesh networks (WMN), putting into practice concepts evolved from more than a decade of research in Ad Hoc networks. Nevertheless, evolution of WMN it is in its infancy, as shows the growing and diverse number of scenarios where WMN are being deployed. In these paper we analyze a particular case study of a Wireless Community Mesh Network, and we compare it with a selected experimental WMN studies found in the literature

    Implementation and evaluation of a simulation system based on particle swarm optimisation for node placement problem in wireless mesh networks

    Get PDF
    With the fast development of wireless technologies, wireless mesh networks (WMNs) are becoming an important networking infrastructure due to their low cost and increased high speed wireless internet connectivity. This paper implements a simulation system based on particle swarm optimisation (PSO) in order to solve the problem of mesh router placement in WMNs. Four replacement methods of mesh routers are considered: constriction method (CM), random inertia weight method (RIWM), linearly decreasing Vmax method (LDVM) and linearly decreasing inertia weight method (LDIWM). Simulation results are provided, showing that the CM converges very fast, but has the worst performance among the methods. The considered performance metrics are the size of giant component (SGC) and the number of covered mesh clients (NCMC). The RIWM converges fast and the performance is good. The LDIWM is a combination of RIWM and LDVM. The LDVM converges after 170 number of phases but has a good performance.Peer ReviewedPostprint (author's final draft
    • …
    corecore