31,620 research outputs found

    Programming multi-level quantum gates in disordered computing reservoirs via machine learning and TensorFlow

    Get PDF
    Novel machine learning computational tools open new perspectives for quantum information systems. Here we adopt the open-source programming library TensorFlow to design multi-level quantum gates including a computing reservoir represented by a random unitary matrix. In optics, the reservoir is a disordered medium or a multi-modal fiber. We show that trainable operators at the input and the readout enable one to realize multi-level gates. We study various qudit gates, including the scaling properties of the algorithms with the size of the reservoir. Despite an initial low slop learning stage, TensorFlow turns out to be an extremely versatile resource for designing gates with complex media, including different models that use spatial light modulators with quantized modulation levels.Comment: Added a new section and a new figure about implementation of the gates by a single spatial light modulator. 9 pages and 4 figure

    Automating image analysis by annotating landmarks with deep neural networks

    Full text link
    Image and video analysis is often a crucial step in the study of animal behavior and kinematics. Often these analyses require that the position of one or more animal landmarks are annotated (marked) in numerous images. The process of annotating landmarks can require a significant amount of time and tedious labor, which motivates the need for algorithms that can automatically annotate landmarks. In the community of scientists that use image and video analysis to study the 3D flight of animals, there has been a trend of developing more automated approaches for annotating landmarks, yet they fall short of being generally applicable. Inspired by the success of Deep Neural Networks (DNNs) on many problems in the field of computer vision, we investigate how suitable DNNs are for accurate and automatic annotation of landmarks in video datasets representative of those collected by scientists studying animals. Our work shows, through extensive experimentation on videos of hawkmoths, that DNNs are suitable for automatic and accurate landmark localization. In particular, we show that one of our proposed DNNs is more accurate than the current best algorithm for automatic localization of landmarks on hawkmoth videos. Moreover, we demonstrate how these annotations can be used to quantitatively analyze the 3D flight of a hawkmoth. To facilitate the use of DNNs by scientists from many different fields, we provide a self contained explanation of what DNNs are, how they work, and how to apply them to other datasets using the freely available library Caffe and supplemental code that we provide.https://arxiv.org/abs/1702.00583Published versio

    Discriminative Training of Deep Fully-connected Continuous CRF with Task-specific Loss

    Full text link
    Recent works on deep conditional random fields (CRF) have set new records on many vision tasks involving structured predictions. Here we propose a fully-connected deep continuous CRF model for both discrete and continuous labelling problems. We exemplify the usefulness of the proposed model on multi-class semantic labelling (discrete) and the robust depth estimation (continuous) problems. In our framework, we model both the unary and the pairwise potential functions as deep convolutional neural networks (CNN), which are jointly learned in an end-to-end fashion. The proposed method possesses the main advantage of continuously-valued CRF, which is a closed-form solution for the Maximum a posteriori (MAP) inference. To better adapt to different tasks, instead of using the commonly employed maximum likelihood CRF parameter learning protocol, we propose task-specific loss functions for learning the CRF parameters. It enables direct optimization of the quality of the MAP estimates during the course of learning. Specifically, we optimize the multi-class classification loss for the semantic labelling task and the Turkey's biweight loss for the robust depth estimation problem. Experimental results on the semantic labelling and robust depth estimation tasks demonstrate that the proposed method compare favorably against both baseline and state-of-the-art methods. In particular, we show that although the proposed deep CRF model is continuously valued, with the equipment of task-specific loss, it achieves impressive results even on discrete labelling tasks
    corecore