3,183 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Network anomaly detection research: a survey

    Get PDF
    Data analysis to identifying attacks/anomalies is a crucial task in anomaly detection and network anomaly detection itself is an important issue in network security. Researchers have developed methods and algorithms for the improvement of the anomaly detection system. At the same time, survey papers on anomaly detection researches are available. Nevertheless, this paper attempts to analyze futher and to provide alternative taxonomy on anomaly detection researches focusing on methods, types of anomalies, data repositories, outlier identity and the most used data type. In addition, this paper summarizes information on application network categories of the existing studies

    FUZZY BASED SECURITY ALGORITHM FOR WIRELESS SENSOR NETWORKS IN THE INTERNET OF THINGS PARADIGM

    Get PDF
    Published ThesisThe world is embracing the idea of Internet of Things and Industrial Revolution 4.0. However, this acceptance of computerised evolution is met with a myriad of challenges, where consumers of this technology are also growing ever so anxious about the security of their personal data as well as reliability of data collected by the millions and even billions of sensors surrounding them. Wireless sensor networks are the main baseline technology driving Internet of things; by their very inherent nature, these networks are too vulnerable to attacks and yet the network security tools designed for conventional computer networks are not effective in countering these attacks. Wireless sensors have low computational resources, may be highly mobile and in most cases, these networks do not have a central point which can be marked as an authentication point for the sensors, any node can join or leave whenever they want. This leaves the sensors and the internet of things applications depending on them highly susceptible to attacks, which may compromise consumer information and leave security breaches in situation that need absolute security such as homes or even the cars they drive. There are many possibilities of things that could go wrong when hackers gain control of sensors in a car or a house. There have been many solutions offered to address security of Wireless Sensor Networks; however, most of those solutions are often not customised for African context. Given that most African countries have not kept pace with the development of these underlying technologies, blanket adoption of the solutions developed for consumption in the developed world has not yielded optimal results. The focus of this research was the development of an Intrusion Detection System that works in a hierarchical network structured Wireless Sensor Network, where cluster heads oversee groups of nodes and relay their data packets all the way to the sink node. This is a reactive Intrusion Detection System (IDS) that makes use of a fuzzy logic based algorithm for verification of intrusion detections. This system borrows characteristics of traditional Wireless Sensor Networks in that it is hosted external to the nodes; that is, on a computer or server connected to the sink node. The rational for this is the premise that developing the system in this manner optimises the power and processing resource of nodes because no part of the IDS is found in the nodes and they are left to focus purely on sensing. The Intrusion Detection System makes use of remote Over The Air programming to communicate with compromised nodes, to either shut down or reboot and is designed with the ZigBee protocol in mind. Additionally, this Intrusion Detection System is intended to being part of a larger Internet of Things integration framework being proposed at the Central University of Technology. This framework is aimed at developing an Internet of Things adoption strategy customised for African needs and regionally local consumers. To evaluate the effectiveness of the solution, the rate of false detections being picked out by the security algorithm were reduced through the use of fuzzy logic systems; this resulted in an accuracies of above 90 %. The algorithm is also very light when asymptotic notation is applied, making it ideal for Wireless Sensors. Lastly, we also put forward the Xbee version of the Triple Modular Redundancy architecture, customised for Wireless sensor networks in order to beef-up on the security solution presented in this dissertation

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper
    • …
    corecore