406 research outputs found

    Managing writing systems using orthography profiles

    Get PDF
    This text is a practical guide for linguists, and programmers, who work with data in multilingual computational environments. We introduce the basic concepts needed to understand how writing systems and character encodings function, and how they work together at the intersection between the Unicode Standard and the International Phonetic Alphabet. Although these standards are often met with frustration by users, they nevertheless provide language researchers and programmers with a consistent computational architecture needed to process, publish and analyze lexical data from the world's languages. Thus we bring to light common, but not always transparent, pitfalls which researchers face when working with Unicode and IPA. Having identified and overcome these pitfalls involved in making writing systems and character encodings syntactically and semantically interoperable (to the extent that they can be), we created a suite of open-source Python and R tools to work with languages using orthography profiles that describe author- or document-specific orthographic conventions. In this cookbook we describe a formal specification of orthography profiles and provide recipes using open source tools to show how users can segment text, analyze it, identify errors, and to transform it into different written forms for comparative linguistics research

    Fuga: A Homoiconic Object-Oriented Programming Language

    Get PDF

    A FPGA/DSP design for real-time fracture detection using low transient pulse

    Get PDF
    This work presents the hardware and software architecture for the detection of fractures and edges in materials. While the detection method is based on the novel concept of Low Transient Pulse (LTP), the overall system implementation is based on two digital microelectronics technologies widely used for signal processing: Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA). Under the proposed architecture, the DSP carries out the analysis of the received baseband signal at a lower rate and hence can be used for large number of signal channels. The FPGA\u27s master clock runs at a higher frequency (62.5MHz) for the generation of LTP signal and to demodulate the passband ultrasonic signals sampled at 1MHz which interrupts the DSP at every 1 [Is. This research elaborates on designing a Quadrature Amplitude Modulator - demodulator (QAM) on the FPGA for the received signal from the ultrasound and edge detection on the DSP processor to detect the presence of edges/fractures on a test Sawbone plate. In this work, the LTP technology is applied to determine the location of the Sawbone plate edges based on the reflected signals to the receivers. This signal is then passed through a QAM to get the maxima (peaks) at the received signal to study the parameters in the DSP. This work successfully demonstrates the feasibility of modular programming approach across the two platforms. The dual time scale platform readily accommodates higher temporal resolution needed for the generation of Low Transient Pulses and the processing of real time baseband signals on the DSP for various test conditions

    Preparing for LISA pathfinder operations : characterisation of the optical metrology system

    Get PDF
    [no abstract

    Multitier self-consistent GW+EDMFTGW+\text{EDMFT}

    Get PDF
    We discuss a parameter-free and computationally efficient ab initio simulation approach for moderately and strongly correlated materials, the multitier self-consistent GW+EDMFT method. This scheme treats different degrees of freedom, such as high- energy and low-energy bands, or local and nonlocal interactions, within appropriate levels of approximation, and provides a fully self-consistent description of correlation and screening effects in the solid. The ab initio input is provided by a one-shot G0W0 calculation, while the strong-correlation effects originating from narrow bands near the Fermi level are captured by a combined GW plus extended dynamical mean-field (EDMFT) treatment. We present the formalism and technical details of our implementation and discuss some general properties of the effective EDMFT impurity action. In particular, we show that the retarded impurity interactions can have noncausal features, while the physical observables, such as the screened interactions of the lattice system, remain causal. As a first application, we present ab initio simulation results for SrMoO3, which demonstrate the existence of prominent plasmon satellites in the spectral function not obtainable within LDA+DMFT, and provide further support for our recent reinterpretation of the satellite features in the related cubic perovskite SrVO3. We then turn to stretched sodium as a model system to explore the performance of the multitier self-consistent GW+EDMFT method in situations with different degrees of correlation. While the results for the physical lattice spacing a0 show that the scheme is not very accurate for electron-gas-like systems, because nonlocal corrections beyond GW are important, it does provide physically correct results in the intermediate correlation regime, and a Mott transition around a lattice spacing of 1.5a0. Remarkably, even though the Wannier functions in the stretched compound are less localized, and hence the bare interaction parameters are reduced, the self-consistently computed impurity interactions show the physically expected trend of an increasing interaction strength with increasing lattice spacing
    • …
    corecore