25,173 research outputs found

    Transformation Based Ensembles for Time Series Classification

    Get PDF
    Until recently, the vast majority of data mining time series classification (TSC) research has focused on alternative distance measures for 1-Nearest Neighbour (1-NN) classifiers based on either the raw data, or on compressions or smoothing of the raw data. Despite the extensive evidence in favour of 1-NN classifiers with Euclidean or Dynamic Time Warping distance, there has also been a flurry of recent research publications proposing classification algorithms for TSC. Generally, these classifiers describe different ways of incorporating summary measures in the time domain into more complex classifiers. Our hypothesis is that the easiest way to gain improvement on TSC problems is simply to transform into an alternative data space where the discriminatory features are more easily detected. To test our hypothesis, we perform a range of benchmarking experiments in the time domain, before evaluating nearest neighbour classifiers on data transformed into the power spectrum, the autocorrelation function, and the principal component space. We demonstrate that on some problems there is dramatic improvement in the accuracy of classifiers built on the transformed data over classifiers built in the time domain, but that there is also a wide variance in accuracy for a particular classifier built on different data transforms. To overcome this variability, we propose a simple transformation based ensemble, then demonstrate that it improves performance and reduces the variability of classifiers built in the time domain only. Our advice to a practitioner with a real world TSC problem is to try transforms before developing a complex classifier; it is the easiest way to get a potentially large increase in accuracy, and may provide further insights into the underlying relationships that characterise the problem

    Relativity and the low energy nd Ay puzzle

    Get PDF
    We solve the Faddeev equation in an exactly Poincare invariant formulation of the three-nucleon problem. The dynamical input is a relativistic nucleon-nucleon interaction that is exactly on-shell equivalent to the high precision CDBonn NN interaction. S-matrix cluster properties dictate how the two-body dynamics is embedded in the three-nucleon mass operator. We find that for neutron laboratory energies above 20 MeV relativistic effects on Ay are negligible. For energies below 20 MeV dynamical effects lower the nucleon analyzing power maximum slightly by 2% and Wigner rotations lower it further up to 10 % increasing thus disagreement between data and theory. This indicates that three-nucleon forces must provide an even larger increase of the Ay maximum than expected up to now.Comment: 29 pages, 2 ps figure

    The One-Body and Two-Body Density Matrices of Finite Nuclei and Center-of-Mass Correlations

    Full text link
    A method is presented for the calculation of the one-body and two-body density matrices and their Fourier transforms in momentum space, that is consistent with the requirement for translational invariance, in the case of a nucleus (a finite self-bound system). We restore translational invariance by using the so-called fixed center-of-mass approximation for constructing an intrinsic nuclear ground state wavefunction by starting from a non-translationally invariant wavefunction and applying a projection prescription. We discuss results for the one-body and two-body momentum distributions of the 4He nucleus calculated with the Slater determinant of the harmonic oscillator orbitals, as the initial non-translationally invariant wavefunction. Effects of such an inclusion of CM correlations are found to be quite important in the momentum distributions.Comment: 5 pages, incl. 2 figures; Proc. Int. Conf. on Frontiers in Nuclear Structure, Astrophysics and Reactions (FINUSTAR), Kos, Greece, Sept.200

    Offline Signature Verification by Combining Graph Edit Distance and Triplet Networks

    Full text link
    Biometric authentication by means of handwritten signatures is a challenging pattern recognition task, which aims to infer a writer model from only a handful of genuine signatures. In order to make it more difficult for a forger to attack the verification system, a promising strategy is to combine different writer models. In this work, we propose to complement a recent structural approach to offline signature verification based on graph edit distance with a statistical approach based on metric learning with deep neural networks. On the MCYT and GPDS benchmark datasets, we demonstrate that combining the structural and statistical models leads to significant improvements in performance, profiting from their complementary properties

    From Traditional to Modern : Domain Adaptation for Action Classification in Short Social Video Clips

    Full text link
    Short internet video clips like vines present a significantly wild distribution compared to traditional video datasets. In this paper, we focus on the problem of unsupervised action classification in wild vines using traditional labeled datasets. To this end, we use a data augmentation based simple domain adaptation strategy. We utilise semantic word2vec space as a common subspace to embed video features from both, labeled source domain and unlablled target domain. Our method incrementally augments the labeled source with target samples and iteratively modifies the embedding function to bring the source and target distributions together. Additionally, we utilise a multi-modal representation that incorporates noisy semantic information available in form of hash-tags. We show the effectiveness of this simple adaptation technique on a test set of vines and achieve notable improvements in performance.Comment: 9 pages, GCPR, 201
    • …
    corecore