7,654 research outputs found

    An Experimental Evaluation of Foreground Detection Algorithms in Real Scenes

    Get PDF
    International audience; Foreground detection is an important preliminary step of many video analysis systems. Many algorithms have been proposed in the last years, but there is not yet a consensus on which approach is the most effective, not even limiting the problem to a single category of videos. This paper aims at constituting a first step towards a reliable assessment of the most commonly used approaches. In particular, four notable algorithms that perform foreground detection have been evaluated using quantitative measures to assess their relative merits and demerits. The evaluation has been carried out using a large, publicly available dataset composed by videos representing different realistic applicative scenarios. The obtained performance is presented and discussed, highlighting the conditions under which algorithm can represent the most effective solution

    Foreground Detection in Camouflaged Scenes

    Full text link
    Foreground detection has been widely studied for decades due to its importance in many practical applications. Most of the existing methods assume foreground and background show visually distinct characteristics and thus the foreground can be detected once a good background model is obtained. However, there are many situations where this is not the case. Of particular interest in video surveillance is the camouflage case. For example, an active attacker camouflages by intentionally wearing clothes that are visually similar to the background. In such cases, even given a decent background model, it is not trivial to detect foreground objects. This paper proposes a texture guided weighted voting (TGWV) method which can efficiently detect foreground objects in camouflaged scenes. The proposed method employs the stationary wavelet transform to decompose the image into frequency bands. We show that the small and hardly noticeable differences between foreground and background in the image domain can be effectively captured in certain wavelet frequency bands. To make the final foreground decision, a weighted voting scheme is developed based on intensity and texture of all the wavelet bands with weights carefully designed. Experimental results demonstrate that the proposed method achieves superior performance compared to the current state-of-the-art results.Comment: IEEE International Conference on Image Processing, 201

    Foreground detection enhancement using Pearson correlation filtering

    Get PDF
    Foreground detection algorithms are commonly employed as an initial module in video processing pipelines for automated surveillance. The resulting masks produced by these algorithms are usually postprocessed in order to improve their quality. In this work, a postprocessing filter based on the Pearson correlation among the pixels in a neighborhood of the pixel at hand is proposed. The flow of information among pixels is controlled by the correlation that exists among them. This way, the filtering performance is enhanced with respect to some state of the art proposals, as demonstrated with a selection of benchmark videos.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Full Reference Objective Quality Assessment for Reconstructed Background Images

    Full text link
    With an increased interest in applications that require a clean background image, such as video surveillance, object tracking, street view imaging and location-based services on web-based maps, multiple algorithms have been developed to reconstruct a background image from cluttered scenes. Traditionally, statistical measures and existing image quality techniques have been applied for evaluating the quality of the reconstructed background images. Though these quality assessment methods have been widely used in the past, their performance in evaluating the perceived quality of the reconstructed background image has not been verified. In this work, we discuss the shortcomings in existing metrics and propose a full reference Reconstructed Background image Quality Index (RBQI) that combines color and structural information at multiple scales using a probability summation model to predict the perceived quality in the reconstructed background image given a reference image. To compare the performance of the proposed quality index with existing image quality assessment measures, we construct two different datasets consisting of reconstructed background images and corresponding subjective scores. The quality assessment measures are evaluated by correlating their objective scores with human subjective ratings. The correlation results show that the proposed RBQI outperforms all the existing approaches. Additionally, the constructed datasets and the corresponding subjective scores provide a benchmark to evaluate the performance of future metrics that are developed to evaluate the perceived quality of reconstructed background images.Comment: Associated source code: https://github.com/ashrotre/RBQI, Associated Database: https://drive.google.com/drive/folders/1bg8YRPIBcxpKIF9BIPisULPBPcA5x-Bk?usp=sharing (Email for permissions at: ashrotreasuedu
    • …
    corecore