40,121 research outputs found

    Data reduction, management, and analysis software for CID

    Get PDF
    In an overview of the Data Reduction System, three major steps are examined. First, the raw data tapes were selected from the onboard recorders. These tapes should provide the best quality data for the data reduction software system. These tapes contained 352 channels of data, plus the monitor channels recorded in 8 bit Pulsed Coded Modulation (PCM) words. The next step consists of transcribing the PCM tapes from 8 bit serial digital data to 8 bit parallel digital data. This puts the data in the correct format for processing. The transcription process was accomplished here at LaRC in the Central Data Transportation Facility (CDTF). The last step in this 3 step process is to process the data through the reduction system developed for the Impact Dynamic Research Facility in the early part of 1980. Processing system criteria, system interface routines, and engineering units program that reads digitized data from tapes, and file management programs are discussed

    Affordances of spreadsheets in mathematical investigation: Potentialities for learning

    Get PDF
    This article, is concerned with the ways learning is shaped when mathematics problems are investigated in spreadsheet environments. It considers how the opportunities and constraints the digital media affords influenced the decisions the students made, and the direction of their enquiry pathway. How might the leraning trajectory unfold, and the learning process and mathematical understanding emerge? Will the spreadsheet, as the pedagogical medium, evoke learning in a distinctive manner? The article reports on an aspect of an ongoing study involving students as they engage mathematical investigative tasks through digital media, the spreadsheet in particular. In considers the affordances of this learning environment for primary-aged students

    Computer‐based learning in psychology using interactive laboratories

    Get PDF
    Traditional approaches to computer‐based learning often focus on the delivery of information. Such applications usually provide large stores of information which can be accessed in a wide variety of ways. Typical access facilities provided within such applications include Boolean search engines and hypermedia (non‐linear) browsing. These types of approach often centre on providing human‐computer dialogues which are relatively low on interaction. The interactive‐laboratory approach, however, aims to limit the quantity of information presented, and instead to provide a highly interactive learning environment. In the field of psychology, users are able interactively to design and deliver a broad range of psychological experiments. This paper details the approach, and describes how it can be used to teach psychology within a university environment. The way in which its effectiveness as a learning tool can be evaluated is also discussed

    A flexible flight display research system using a ground-based interactive graphics terminal

    Get PDF
    Requirements and research areas for the air transportation system of the 1980 to 1990's were reviewed briefly to establish the need for a flexible flight display generation research tool. Specific display capabilities required by aeronautical researchers are listed and a conceptual system for providing these capabilities is described. The conceptual system uses a ground-based interactive graphics terminal driven by real-time radar and telemetry data to generate dynamic, experimental flight displays. These displays are scan converted to television format, processed, and transmitted to the cockpits of evaluation aircraft. The attendant advantages of a Flight Display Research System (FDRS) designed to employ this concept are presented. The detailed implementation of an FDRS is described. The basic characteristics of the interactive graphics terminal and supporting display electronic subsystems are presented and the resulting system capability is summarized. Finally, the system status and utilization are reviewed

    Assess program: Interactive data management systems for airborne research

    Get PDF
    Two data systems were developed for use in airborne research. Both have distributed intelligence and are programmed for interactive support among computers and with human operators. The C-141 system (ADAMS) performs flight planning and telescope control functions in addition to its primary role of data acquisition; the CV-990 system (ADDAS) performs data management functions in support of many research experiments operating concurrently. Each system is arranged for maximum reliability in the first priority function, precision data acquisition

    Functional requirements for the man-vehicle systems research facility

    Get PDF
    The NASA Ames Research Center proposed a man-vehicle systems research facility to support flight simulation studies which are needed for identifying and correcting the sources of human error associated with current and future air carrier operations. The organization of research facility is reviewed and functional requirements and related priorities for the facility are recommended based on a review of potentially critical operational scenarios. Requirements are included for the experimenter's simulation control and data acquisition functions, as well as for the visual field, motion, sound, computation, crew station, and intercommunications subsystems. The related issues of functional fidelity and level of simulation are addressed, and specific criteria for quantitative assessment of various aspects of fidelity are offered. Recommendations for facility integration, checkout, and staffing are included

    Proof of concept of a workflow methodology for the creation of basic canine head anatomy veterinary education tool using augmented reality

    Get PDF
    Neuroanatomy can be challenging to both teach and learn within the undergraduate veterinary medicine and surgery curriculum. Traditional techniques have been used for many years, but there has now been a progression to move towards alternative digital models and interactive 3D models to engage the learner. However, digital innovations in the curriculum have typically involved the medical curriculum rather than the veterinary curriculum. Therefore, we aimed to create a simple workflow methodology to highlight the simplicity there is in creating a mobile augmented reality application of basic canine head anatomy. Using canine CT and MRI scans and widely available software programs, we demonstrate how to create an interactive model of head anatomy. This was applied to augmented reality for a popular Android mobile device to demonstrate the user-friendly interface. Here we present the processes, challenges and resolutions for the creation of a highly accurate, data based anatomical model that could potentially be used in the veterinary curriculum. This proof of concept study provides an excellent framework for the creation of augmented reality training products for veterinary education. The lack of similar resources within this field provides the ideal platform to extend this into other areas of veterinary education and beyond
    corecore