138 research outputs found

    PoboljŔana elektromagnetska kompatibilnost (EMC) sklopnog energetskog pretvarača sa slučajnom modulacijom

    Get PDF
    This paper surveys some analytical and experimental results concerning different randomized modulation strategies in switched-mode power converters (SMPCs). After a short review of practical experiences within the literature it presents the benefits of several randomized schemes for power converters (i.e. reduced electromagnetic interference - EMI, and lower acoustic noise). It also introduces the mathematical background for dealing with randomized modulation within the medium-frequency range: power spectrum density (PSD). Finally, the EMI measurements confirm the improved EMC performances of the randomized boost rectifier, as also in the DC-DC buck converter.Ovaj članak istražuje analitičke i eksperimentalne rezultate različitih slučajnih strategija modulacije u sklopnim energetskim pretvaračima (SMPCs). Nakon kratkog pregleda praktičnih iskustava iz literature, predstavljene su prednosti nekoliko slučajnih shema za energetske pretvarače (smanjena elektromagnetska interferencija - EMI, i niži akustični Å”um). Također, uvedena je matematička podloga za rad sa slučajnom modulacijom u području srednjih frekvencija: spektralna gustoća snage (PSD). Konačno, EMI mjerenja potvrđuju poboljÅ”anja EMC performansi slučajnih uzlaznih ispravljača, kao i DC-DC silaznih pretvarača

    New techniques to improve power quality and evaluate stability in modern all-electric naval ship power systems

    Get PDF
    This dissertation focuses on two crucial issues in the design and analysis of the power electronic systems on modern all-electric naval ships, i.e., power quality control and stability evaluation. It includes three papers that deal with active power filter topology, active rectifier control, and impedance measurement techniques, respectively. To mitigate harmonic currents generated by high-power high-voltage shipboard loads such as propulsion motor drives, the first paper proposes a novel seven-level shunt active power filter topology, which utilizes tapped reactors for parallel operations of switching devices. The multi-level system has been implemented in both regular digital simulation and real-time digital simulator for validation. In the second paper, a harmonic compensation algorithm for three-phase active rectifiers is proposed. Based on the theory of multiple reference frames, it provides fast and accurate regulation of selected harmonic currents so that the rectifier draws balanced and sinusoidal currents from the source, even when the input voltages are unbalanced and contain harmonics. Extensive laboratory tests on a 2 kW prototype system verifies the effectiveness of the proposed control scheme. The last paper presents a new technique for impedance identification of dc and ac power electronic systems, which significantly simplifies the procedure for stability analysis. Recurrent neural networks are used to build dynamic models of the system based on a few signal injections, then the impedance information can be extracted using off-line training and identification algorithms. Both digital simulation and hardware tests were used to validate the technique --Abstract, page iv

    Power Converters in Power Electronics

    Get PDF
    In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters

    Design and Control of Power Converters for High Power-Quality Interface with Utility and Aviation Grids

    Get PDF
    Power electronics as a subject integrating power devices, electric and electronic circuits, control, and thermal and mechanic design, requires not only knowledge and engineering insight for each subarea, but also understanding of interface issues when incorporating these different areas into high performance converter design.Addressing these fundamental questions, the dissertation studies design and control issues in three types of power converters applied in low-frequency high-power transmission, medium-frequency converter emulated grid, and high-frequency high-density aviation grid, respectively, with the focus on discovering, understanding, and mitigating interface issues to improve power quality and converter performance, and to reduce the noise emission.For hybrid ac/dc power transmission,ā€¢ Analyze the interface transformer saturation issue between ac and dc power flow under line unbalances.ā€¢ Proposed both passive transformer design and active hybrid-line-impedance-conditioner to suppress this issue.For transmission line emulator,ā€¢ Propose general transmission line emulation schemes with extension capability.ā€¢ Analyze and actively suppress the effects of sensing/sampling bias and PWM ripple on emulation considering interfaced grid impedance.ā€¢ Analyze the stability issue caused by interaction of the emulator and its interfaced impedance. A criterion that determines the stability and impedance boundary of the emulator is proposed.For aircraft battery charger,ā€¢ Investigate architectures for dual-input and dual-output battery charger, and a three-level integrated topology using GaN devices is proposed to achieve high density.ā€¢ Identify and analyze the mechanisms and impacts of high switching frequency, di/dt, dv/dt on sensing and power quality control; mitigate solutions are proposed.ā€¢ Model and compensate the distortion due to charging transition of device junction capacitances in three-level converters.ā€¢ Find the previously overlooked device junction capacitance of the nonactive devices in three-level converters, and analyze the impacts on switching loss, device stress, and current distortion. A loss calculation method is proposed using the data from the conventional double pulse tester.ā€¢ Establish fundamental knowledge on performance degradation of EMI filters. The impacts and mechanisms of both inductive and capacitive coupling on different filter structures are understood. Characterization methodology including measuring, modeling, and prediction of filter insertion loss is proposed. Mitigation solutions are proposed to reduce inter-component coupling and self-parasitics

    Industrial and Technological Applications of Power Electronics Systems

    Get PDF
    The Special Issue "Industrial and Technological Applications of Power Electronics Systems" focuses on: - new strategies of control for electric machines, including sensorless control and fault diagnosis; - existing and emerging industrial applications of GaN and SiC-based converters; - modern methods for electromagnetic compatibility. The book covers topics such as control systems, fault diagnosis, converters, inverters, and electromagnetic interference in power electronics systems. The Special Issue includes 19 scientific papers by industry experts and worldwide professors in the area of electrical engineering

    Analiza dizajna LCLC rezonantnog invertera za dvostupanjsko dvofazno napajanje

    Get PDF
    This paper deals with the design analysis and synthesis of power resonant inverter with sinusoidal output voltage for sensitive loads. The proposed filter must be capable of removing higher harmonic components from the supplying voltage to reach a harmonic distortion of roughly 5% in the whole range of the load (0 āˆ’ 100%). The inverter can be supplied from either single-phase voltage inverter in full- or half- bridge connection, or from simple DC/DC buck converter. Non-symmetrical control causes higher harmonic content, both odd and even. Simulation and experimental results based on designed parameters and subsequently obtained from Matlab and OrCad models confirm good quality of output quantities, voltage and current.Tema je ovog članka analiza dizajna i sinteza učinskog rezonantnog invertera sa sinisuidalnim izlaznim naponom za osjetljive terete. Predloženi filtar mora moći filtrirati viÅ”e harmonike ulaznog napona kako bi distorzija harmonika bila oko 5% u čitavom radnom području (0āˆ’100%). Inverter se može napajati ili iz jednofaznog naponskog invertera u mosnom ili uzrokuje pojavu viÅ”ih harmonika u signalu, kako parnih tako i neparnih. Simulacijski i eksperimentalni rezultati temeljeni na sintetiziranim parametrima dobivenim od modela napravljenih u programskim paketima Matlab i OrCad potvr.uju dobru kvalitetu izlaznih veličina napona i struje

    Design and Advanced Model Predictive Control of Wide Bandgap Based Power Converters

    Get PDF
    The field of power electronics (PE) is experiencing a revolution by harnessing the superior technical characteristics of wide-band gap (WBG) materials, namely Silicone Carbide (SiC) and Gallium Nitride (GaN). Semiconductor devices devised using WBG materials enable high temperature operation at reduced footprint, offer higher blocking voltages, and operate at much higher switching frequencies compared to conventional Silicon (Si) based counterpart. These characteristics are highly desirable as they allow converter designs for challenging applications such as more-electric-aircraft (MEA), electric vehicle (EV) power train, and the like. This dissertation presents designs of a WBG based power converters for a 1 MW, 1 MHz ultra-fast offboard EV charger, and 250 kW integrated modular motor drive (IMMD) for a MEA application. The goal of these designs is to demonstrate the superior power density and efficiency that are achievable by leveraging the power of SiC and GaN semiconductors. Ultra-fast EV charging is expected to alleviate the challenge of range anxiety , which is currently hindering the mass adoption of EVs in automotive market. The power converter design presented in the dissertation utilizes SiC MOSFETs embedded in a topology that is a modification of the conventional three-level (3L) active neutral-point clamped (ANPC) converter. A novel phase-shifted modulation scheme presented alongside the design allows converter operation at switching frequency of 1 MHz, thereby miniaturizing the grid-side filter to enhance the power density. IMMDs combine the power electronic drive and the electric machine into a single unit, and thus is an efficient solution to realize the electrification of aircraft. The IMMD design presented in the dissertation uses GaN devices embedded in a stacked modular full-bridge converter topology to individually drive each of the motor coils. Various issues and solutions, pertaining to paralleling of GaN devices to meet the high current requirements are also addressed in the thesis. Experimental prototypes of the SiC ultra-fast EV charger and GaN IMMD were built, and the results confirm the efficacy of the proposed designs. Model predictive control (MPC) is a nonlinear control technique that has been widely investigated for various power electronic applications in the past decade. MPC exploits the discrete nature of power converters to make control decisions using a cost function. The controller offers various advantages over, e.g., linear PI controllers in terms of fast dynamic response, identical performance at a reduced switching frequency, and ease of applicability to MIMO applications. This dissertation also investigates MPC for key power electronic applications, such as, grid-tied VSC with an LCL filter and multilevel VSI with an LC filter. By implementing high performance MPC controllers on WBG based power converters, it is possible to formulate designs capable of fast dynamic tracking, high power operation at reduced THD, and increased power density

    Applications of Power Electronics:Volume 2

    Get PDF
    • ā€¦
    corecore