518,532 research outputs found

    Integration of experience feedback into the product lifecycle: an approach to best respond to the bidding process

    Get PDF
    Bidding process allows a client to choose a bidder to realize an embodiment of work, supply or service. From the bidder point of view, there are several obvious risks when responding because he bets on a future development that hasn’t been yet realized. We propose to assist the bidder with decision support tools based on past experiences to detect, report and minimize these potential risks. In this paper, we present the definition of a conceptual architecture to integrate experience feedback into the product lifecycle taking into account all stages of product lifecycle to best respond new bidding processes

    MoCog1: A computer simulation of recognition-primed human decision making

    Get PDF
    This report describes the successful results of the first stage of a research effort to develop a 'sophisticated' computer model of human cognitive behavior. Most human decision-making is of the experience-based, relatively straight-forward, largely automatic, type of response to internal goals and drives, utilizing cues and opportunities perceived from the current environment. This report describes the development of the architecture and computer program associated with such 'recognition-primed' decision-making. The resultant computer program was successfully utilized as a vehicle to simulate findings that relate how an individual's implicit theories orient them toward particular goals, with resultant cognitions, affects, and behavior in response to their environment. The present work is an expanded version and is based on research reported while the author was an employee of NASA ARC

    Variability Management in an unaware software product line company: An experience report

    Get PDF
    Software product line adoption is a challenging task in software development organisations. There are some reports in the literature of how software product line engineering has been adopted in several companies using di erent variabil-ity management techniques and patterns. However, to the best of our knowledge, there are no empirical reports on how variability management is handled in companies that do not know about software product line methods and tools. In this paper we present an experience report observing variability management practices in a software development company that was unaware of software product line approaches. We brie y report how variability management is performed in di erent areas ranging from business architecture to software assets management. From the observation we report some open research opportunities for the future and foster further similar and more structured empirical studies on unaware software product line companies.Ministerio de Economía y Competitividad TIN2012-32273Junta de Andalucía TIC-5906Junta de Andalucía P12-TIC-186

    Unit Test Generation During Software Development: EvoSuite Plugins for Maven, IntelliJ and Jenkins

    Get PDF
    Different techniques to automatically generate unit tests for object oriented classes have been proposed, but how to integrate these tools into the daily activities of software development is a little investigated question. In this paper, we report on our experience in supporting industrial partners in introducing the EVOSUITE automated JUnit test generation tool in their software development processes. The first step consisted of providing a plugin to the Apache Maven build infrastructure. The move from a research-oriented point-and-click tool to an automated step of the build process has implications on how developers interact with the tool and generated tests, and therefore, we produced a plugin for the popular IntelliJ Integrated Development Environment (IDE). As build automation is a core component of Continuous Integration (CI), we provide a further plugin to the Jenkins CI system, which allows developers to monitor the results of EVOSUITE and integrate generated tests in their source tree. In this paper, we discuss the resulting architecture of the plugins, and the challenges arising when building such plugins. Although the plugins described are targeted for the EVOSUITE tool, they can be adapted and their architecture can be reused for other test generation tools as well

    Website Building For Monitoring Performance On Business Government And Enterprise Service At Telkom Regional II

    Get PDF
    This practical work report focuses on the development of a website for monitoring performance on Business Government and Enterprise Service in Telkom Regional II. The objective of this project is to provide a user-friendly platform that enables real-time data and analytics on performance, improving customer experience, and providing access to information about the company's services. The report discusses the problem formulation, which includes the lack of real-time data and analytics, inefficient methods for accessing information, poor customer experience, and the need for an effective website. The report then outlines the architecture design for the website, including the front-end, back-end, database, analytics, and security components. The report concludes with a discussion of the implementation process and the testing and evaluation of the website's functionality and performance. Overall, the practical work demonstrates the importance of website development in monitoring performance and improving the customer experience in the telecommunications industry

    Unit Test Generation During Software Development: EvoSuite Plugins for Maven, IntelliJ and Jenkins

    Get PDF
    Different techniques to automatically generate unit tests for object oriented classes have been proposed, but how to integrate these tools into the daily activities of software development is a little investigated question. In this paper, we report on our experience in supporting industrial partners in introducing the EVOSUITE automated JUnit test generation tool in their software development processes. The first step consisted of providing a plugin to the Apache Maven build infrastructure. The move from a research-oriented point-and-click tool to an automated step of the build process has implications on how developers interact with the tool and generated tests, and therefore, we produced a plugin for the popular IntelliJ Integrated Development Environment (IDE). As build automation is a core component of Continuous Integration (CI), we provide a further plugin to the Jenkins CI system, which allows developers to monitor the results of EVOSUITE and integrate generated tests in their source tree. In this paper, we discuss the resulting architecture of the plugins, and the challenges arising when building such plugins. Although the plugins described are targeted for the EVOSUITE tool, they can be adapted and their architecture can be reused for other test generation tools as well

    Architectural Evolution of a Software Product Line: an experience report

    Get PDF
    Abstract-This work presents an experience report on the architectural decisions taken in the evolution of a Software Product Line (SPL) of Model-based Testing tools (PLeTs). This SPL was partially designed and developed with the intention of minimizing effort and time-to-market during the development of a family of performance testing tools. With the evolution of our research and the addition of new features to the SPL, we identified limitations in the initial architectural design of PLeTs' components, which led us to redesign its Software Product Line Architecture (SPLA). In this paper, we discuss the main issues that led to changes in our SPLA, as well as present the design decisions that facilitate its evolution in the context of an industrial environment. We will also report our experiences on architecture modifications in the evolution of our SPL with the intention of allowing easier maintenance in a volatile development environment

    Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system components

    Get PDF
    This annual report summarizes the work completed during the third year of technical effort on the referenced contract. Principal developments continue to focus on the Probabilistic Finite Element Method (PFEM) which has been under development for three years. Essentially all of the linear capabilities within the PFEM code are in place. Major progress in the application or verifications phase was achieved. An EXPERT module architecture was designed and partially implemented. EXPERT is a user interface module which incorporates an expert system shell for the implementation of a rule-based interface utilizing the experience and expertise of the user community. The Fast Probability Integration (FPI) Algorithm continues to demonstrate outstanding performance characteristics for the integration of probability density functions for multiple variables. Additionally, an enhanced Monte Carlo simulation algorithm was developed and demonstrated for a variety of numerical strategies
    corecore