331 research outputs found

    An executable Theory of Multi-Agent Systems Refinement

    Get PDF
    Complex applications such as incident management, social simulations, manufacturing applications, electronic auctions, e-institutions, and business to business applications are pervasive and important nowadays. Agent-oriented methodology is an advance in abstractionwhich can be used by software developers to naturally model and develop systems for suchapplications. In general, with respect to design methodologies, what it may be important tostress is that control structures should be added at later stages of design, in a natural top-downmanner going from specifications to implementations, by refinement. Too much detail (be itfor the sake of efficiency) in specifications often turns out to be harmful. To paraphrase D.E.Knuth, “Premature optimization is the root of all evil” (quoted in ‘The Unix ProgrammingEnvironment’ by Kernighan and Pine, p. 91).The aim of this thesis is to adapt formal techniques to the agent-oriented methodologyinto an executable theory of refinement. The justification for doing so is to provide correctagent-based software by design. The underlying logical framework of the theory we proposeis based on rewriting logic, thus the theory is executable in the same sense as rewriting logicis. The storyline is as follows. We first motivate and explain constituting elements of agentlanguages chosen to represent both abstract and concrete levels of design. We then proposea definition of refinement between agents written in such languages. This notion of refinement ensures that concrete agents are correct with respect to the abstract ones. The advantageof the definition is that it easily leads to formulating a proof technique for refinement viathe classical notion of simulation. This makes it possible to effectively verify refinement bymodel-checking. Additionally, we propose a weakest precondition calculus as a deductivemethod based on assertions which allow to prove correctness of infinite state agents. Wegeneralise the refinement relation from single agents to multi-agent systems in order to ensure that concrete multi-agent systems refine their abstractions. We see multi-agent systemsas collections of coordinated agents, and we consider coordination artefacts as being basedeither on actions or on normative rules. We integrate these two orthogonal coordinationmechanisms within the same refinement theory extended to a timed framework. Finally, wediscuss implementation aspects.LEI Universiteit LeidenFoundations of Software Technolog

    Enriching APSI with Validation Capabilities: the KEEN environment and its use in Robotics

    Get PDF
    This paper presents the KnowledgE ENgineering (KEEN) design support system in which Validation and Verification (V&V) methods are used to strengthen onground development of software for plan-based autonomy. In particular, the paper describes a collection of verification methods, based on Timed Game Automata (TGA), deployed for the design and development of timeline-based Planning and Scheduling (P&S) applications within the APSI-TRF framework. The KEENs V&V functionalities are illustrated describing software development to synthesize plans for a planetary rover

    Taming the Complexity of Timeline-Based Planning over Dense Temporal Domains

    Get PDF

    Efficient Model Checking: The Power of Randomness

    Get PDF

    Taming the complexity of timeline-based planning over dense temporal domains

    Get PDF
    The problem of timeline-based planning (TP) over dense temporal domains is known to be undecidable. In this paper, we introduce two semantic variants of TP, called strong minimal and weak minimal semantics, which allow to express meaningful properties. Both semantics are based on the minimality in the time distances of the existentially-quantified time events from the universally-quantified reference event, but the weak minimal variant distinguishes minimality in the past from minimality in the future. Surprisingly, we show that, despite the (apparently) small difference in the two semantics, for the strong minimal one, the TP problem is still undecidable, while for the weak minimal one, the TP problem is just PSPACE-complete. Membership in PSPACE is determined by exploiting a strictly more expressive extension (ECA+) of the well-known robust class of Event-Clock Automata (ECA) that allows to encode the weak minimal TP problem and to reduce it to non-emptiness of Timed Automata (TA). Finally, an extension of ECA+(ECA++) is considered, proving that its non-emptiness problem is undecidable. We believe that the two extensions of ECA (ECA+ and ECA++), introduced for technical reasons, are actually valuable per sé in the field of TA

    Risk-minimizing program execution in robotic domains

    Get PDF
    Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 153-161).In this thesis, we argue that autonomous robots operating in hostile and uncertain environments can improve robustness by computing and reasoning explicitly about risk. Autonomous robots with a keen sensitivity to risk can be trusted with critical missions, such as exploring deep space and assisting on the battlefield. We introduce a novel, risk-minimizing approach to program execution that utilizes program flexibility and estimation of risk in order to make runtime decisions that minimize the probability of program failure. Our risk-minimizing executive, called Murphy, utilizes two forms of program flexibility, 1) flexible scheduling of activity timing, and 2) redundant choice between subprocedures, in order to minimize two forms of program risk, 1) exceptions arising from activity failures, and 2) exceptions arising from timing constraint violations in a program. Murphy takes two inputs, a program written in a nondeterministic variant of the Reactive Model-based Programming Language (RMPL) and a set of stochastic activity failure models, one for each activity in a program, and computes two outputs, a risk-minimizing decision policy and value function. The decision policy informs Murphy which decisions to make at runtime in order to minimize risk, while the value function quantifies risk. In order to execute with low latency, Murphy computes the decision policy and value function offline, as a compilation step prior to program execution. In this thesis, we develop three approaches to RMPL program execution. First, we develop an approach that is guaranteed to minimize risk. For this approach, we reason probabilistically about risk by framing program execution as a Markov Decision Process (MDP). Next, we develop an approach that avoids risk altogether. For this approach, we frame program execution as a novel form of constraint-based temporal reasoning. Finally, we develop an execution approach that trades optimality in risk avoidance for tractability. For this approach, we leverage prior work in hierarchical decomposition of MDPs in order to mitigate complexity. We benchmark the tractability of each approach on a set of representative RMPL programs, and we demonstrate the applicability of the approach on a humanoid robot simulator.by Robert T. Effinger, IV.Sc.D

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie
    corecore