13,485 research outputs found

    Structure, classifcation, and conformal symmetry, of elementary particles over non-archimedean space-time

    Get PDF
    It is known that no length or time measurements are possible in sub-Planckian regions of spacetime. The Volovich hypothesis postulates that the micro-geometry of spacetime may therefore be assumed to be non-archimedean. In this letter, the consequences of this hypothesis for the structure, classification, and conformal symmetry of elementary particles, when spacetime is a flat space over a non-archimedean field such as the pp-adic numbers, is explored. Both the Poincar\'e and Galilean groups are treated. The results are based on a new variant of the Mackey machine for projective unitary representations of semidirect product groups which are locally compact and second countable. Conformal spacetime is constructed over pp-adic fields and the impossibility of conformal symmetry of massive and eventually massive particles is proved

    Some Speed-Ups and Speed Limits for Real Algebraic Geometry

    Get PDF
    We give new positive and negative results (some conditional) on speeding up computational algebraic geometry over the reals: (1) A new and sharper upper bound on the number of connected components of a semialgebraic set. Our bound is novel in that it is stated in terms of the volumes of certain polytopes and, for a large class of inputs, beats the best previous bounds by a factor exponential in the number of variables. (2) A new algorithm for approximating the real roots of certain sparse polynomial systems. Two features of our algorithm are (a) arithmetic complexity polylogarithmic in the degree of the underlying complex variety (as opposed to the super-linear dependence in earlier algorithms) and (b) a simple and efficient generalization to certain univariate exponential sums. (3) Detecting whether a real algebraic surface (given as the common zero set of some input straight-line programs) is not smooth can be done in polynomial time within the classical Turing model (resp. BSS model over C) only if P=NP (resp. NP<=BPP). The last result follows easily from an unpublished result of Steve Smale.Comment: This is the final journal version which will appear in Journal of Complexity. More typos are corrected, and a new section is added where the bounds here are compared to an earlier result of Benedetti, Loeser, and Risler. The LaTeX source needs the ajour.cls macro file to compil

    Quantum Knitting

    Get PDF
    We analyze the connections between the mathematical theory of knots and quantum physics by addressing a number of algorithmic questions related to both knots and braid groups. Knots can be distinguished by means of `knot invariants', among which the Jones polynomial plays a prominent role, since it can be associated with observables in topological quantum field theory. Although the problem of computing the Jones polynomial is intractable in the framework of classical complexity theory, it has been recently recognized that a quantum computer is capable of approximating it in an efficient way. The quantum algorithms discussed here represent a breakthrough for quantum computation, since approximating the Jones polynomial is actually a `universal problem', namely the hardest problem that a quantum computer can efficiently handle.Comment: 29 pages, 5 figures; to appear in Laser Journa
    • …
    corecore