6,630 research outputs found

    Theory and Applications of Robust Optimization

    Full text link
    In this paper we survey the primary research, both theoretical and applied, in the area of Robust Optimization (RO). Our focus is on the computational attractiveness of RO approaches, as well as the modeling power and broad applicability of the methodology. In addition to surveying prominent theoretical results of RO, we also present some recent results linking RO to adaptable models for multi-stage decision-making problems. Finally, we highlight applications of RO across a wide spectrum of domains, including finance, statistics, learning, and various areas of engineering.Comment: 50 page

    Discretizing Distributions with Exact Moments: Error Estimate and Convergence Analysis

    Full text link
    The maximum entropy principle is a powerful tool for solving underdetermined inverse problems. This paper considers the problem of discretizing a continuous distribution, which arises in various applied fields. We obtain the approximating distribution by minimizing the Kullback-Leibler information (relative entropy) of the unknown discrete distribution relative to an initial discretization based on a quadrature formula subject to some moment constraints. We study the theoretical error bound and the convergence of this approximation method as the number of discrete points increases. We prove that (i) the theoretical error bound of the approximate expectation of any bounded continuous function has at most the same order as the quadrature formula we start with, and (ii) the approximate discrete distribution weakly converges to the given continuous distribution. Moreover, we present some numerical examples that show the advantage of the method and apply to numerically solving an optimal portfolio problem.Comment: 20 pages, 14 figure

    Problem-driven scenario generation: an analytical approach for stochastic programs with tail risk measure

    Get PDF
    Scenario generation is the construction of a discrete random vector to represent parameters of uncertain values in a stochastic program. Most approaches to scenario generation are distribution-driven, that is, they attempt to construct a random vector which captures well in a probabilistic sense the uncertainty. On the other hand, a problem-driven approach may be able to exploit the structure of a problem to provide a more concise representation of the uncertainty. In this paper we propose an analytic approach to problem-driven scenario generation. This approach applies to stochastic programs where a tail risk measure, such as conditional value-at-risk, is applied to a loss function. Since tail risk measures only depend on the upper tail of a distribution, standard methods of scenario generation, which typically spread their scenarios evenly across the support of the random vector, struggle to adequately represent tail risk. Our scenario generation approach works by targeting the construction of scenarios in areas of the distribution corresponding to the tails of the loss distributions. We provide conditions under which our approach is consistent with sampling, and as proof-of-concept demonstrate how our approach could be applied to two classes of problem, namely network design and portfolio selection. Numerical tests on the portfolio selection problem demonstrate that our approach yields better and more stable solutions compared to standard Monte Carlo sampling

    Asset liability management modeling using multi-stage mixed-integer stochastic programming

    Get PDF
    A pension fund has to match the portfolio of long-term liabilities with the portfolio of assets. Key instruments in strategic Asset Liability Management (ALM) are the adjustments of the contribution rate of the sponsor and the reallocation of the investments in several asset classes at various points of time. We formulate a multistage mixed-integer stochastic program to model this ALM process. Special attention is paid to the use of binary variables.
    corecore