1,022 research outputs found

    Improving time predictability of shared hardware resources in real-time multicore systems : emphasis on the space domain

    Get PDF
    Critical Real-Time Embedded Systems (CRTES) follow a verification and validation process on the timing and functional correctness. This process includes the timing analysis that provides Worst-Case Execution Time (WCET) estimates to provide evidence that the execution time of the system, or parts of it, remain within the deadlines. A key design principle for CRTES is the incremental qualification, whereby each software component can be subject to verification and validation independently of any other component, with obvious benefits for cost. At timing level, this requires time composability, such that the timing behavior of a function is not affected by other functions. CRTES are experiencing an unprecedented growth with rising performance demands that have motivated the use of multicore architectures. Multicores can provide the performance required and bring the potential of integrating several software functions onto the same hardware. However, multicore contention in the access to shared hardware resources creates a dependence of the execution time of a task with the rest of the tasks running simultaneously. This dependence threatens time predictability and jeopardizes time composability. In this thesis we analyze and propose hardware solutions to be applied on current multicore designs for CRTES to improve time predictability and time composability, focusing on the on-chip bus and the memory controller. At hardware level, we propose new bus and memory controller designs that control and mitigate contention between different cores and allow to have time composability by design, also in the context of mixed-criticality systems. At analysis level, we propose contention prediction models that factor the impact of contenders and don¿t need modifications to the hardware. We also propose a set of Performance Monitoring Counters (PMC) that provide evidence about the contention. We give an special emphasis on the Space domain focusing on the Cobham Gaisler NGMP multicore processor, which is currently assessed by the European Space Agency for its future missions.Los Sistemas Críticos Empotrados de Tiempo Real (CRTES) siguen un proceso de verificación y validación para su correctitud funcional y temporal. Este proceso incluye el análisis temporal que proporciona estimaciones de el peor caso del tiempo de ejecución (WCET) para dar evidencia de que el tiempo de ejecución del sistema, o partes de él, permanecen dentro de los límites temporales. Un principio de diseño clave para los CRTES es la cualificación incremental, por la que cada componente de software puede ser verificado y validado independientemente del resto de componentes, con beneficios obvios para el coste. A nivel temporal, esto requiere composabilidad temporal, por la que el comportamiento temporal de una función no se ve afectado por otras funciones. CRTES están experimentando un crecimiento sin precedentes con crecientes demandas de rendimiento que han motivado el uso the arquitecturas multi-núcleo (multicore). Los procesadores multi-núcleo pueden proporcionar el rendimiento requerido y tienen el potencial de integrar varias funcionalidades software en el mismo hardware. A pesar de ello, la interferencia entre los diferentes núcleos que aparece en los recursos compartidos de os procesadores multi núcleo crea una dependencia del tiempo de ejecución de una tarea con el resto de tareas ejecutándose simultáneamente en el procesador. Esta dependencia amenaza la predictabilidad temporal y compromete la composabilidad temporal. En esta tésis analizamos y proponemos soluciones hardware para ser aplicadas en los diseños multi núcleo actuales para CRTES que mejoran la predictabilidad y composabilidad temporal, centrándose en el bus y el controlador de memoria internos al chip. A nivel de hardware, proponemos nuevos diseños de buses y controladores de memoria que controlan y mitigan la interferencia entre los diferentes núcleos y permiten tener composabilidad temporal por diseño, también en el contexto de sistemas de criticalidad mixta. A nivel de análisis, proponemos modelos de predicción de la interferencia que factorizan el impacto de los núcleos y no necesitan modificaciones hardware. También proponemos un conjunto de Contadores de Control del Rendimiento (PMC) que proporcionoan evidencia de la interferencia. En esta tésis, damós especial importancia al dominio espacial, centrándonos en el procesador mutli núcleo Cobham Gaisler NGMP, que está siendo actualmente evaluado por la Agencia Espacial Europea para sus futuras misiones

    Measuring and Controlling Multicore Contention in a RISC-V System-on-Chip

    Get PDF
    [ES] Los procesadores multinúcleo empezaron una revolución en el cómputo moderno cuando fueron introducidos en el espacio de cómputo comercial y de consumidor. Estos procesadores multinúcleo presentaban un aumento significativo en consumo, eficiencia y rendimiento en un periodo de tiempo en el aumento de la frecuencia y el IPC del procesador parecía estar tocando techo. Sin embargo, en sistemas críticos, la introducción de los procesadores multinúcleo ha traído a la luz diferentes dificultades en el proceso de certificación. La principal área que dificulta la caracterización de los sistemas multicore en tiempo real es el uso de recursos compartidos, en específico, los buses compartidos. En este trabajo proveeremos las herramientas necesarias para facilitar la caracterización de sistemas que hacen uso de buses compartidos en sistemas de criticidad mixta. En específico, combinamos las políticas desarrolladas para sistemas con buses con políticas de limitación de ancho de banda basadas en interferencia causada al núcleo principal. Con esta combinación de políticas podemos limitar el WCET de la tarea crítica en el sistema multinúcleo mientras que proveemos un "best effort" para permitir el progreso en los núcleos secundarios.[CAT] Els processadors multinucli van començar una revolució en el còmput modern quan van ser introduïts en l’espai de còmput comercial i de consumidor. Aquests processadors multinucli presentaven un augment significatiu en consum, eficiència i rendiment en un període de temps en l’augment de la freqüència i l’IPC de l’processador semblava estar tocant sostre. No obstant això, en sistemes crítics, la introducció dels processadors multi- nucli ha portat a la llum diferents dificultats en el procés de certificació. La principal àrea que dificulta la caracterització dels sistemes multinucli en temps real és l’ús de recursos compartits, en específic, els busos compartits. En aquest treball proveirem les eines necessàries per facilitar la caracterització de sis- temes que fan ús de busos compartits en sistemes de criticitat mixta. En específic, combi- nem les polítiques desenvolupades per a sistemes amb busos amb polítiques de limitació d’ample de banda basades en interferència causada a el nucli principal. Amb aquesta combinació de polítiques podem limitar l’WCET de la tasca crítica en el sistema multinu- cli mentre que proveïm un "best effort"per permetre el progrés en els nuclis secundaris.[EN] Multicore processors were a revolution when introduced into the commercial computing space, they presented great power efficiency and performance in a time where clock speeds and instruction level parallelism were plateauing. But, on safety critical systems, the introduction of multi-core processors has brought serious difficulties to the certification process. The main trouble spot for multicore characterization is the usage of shared resources, in specific, shared buses. In this work, we provide tools to ease the characterization of shared bus mechanisms timing interference on critical and mixed criticality systems. In particular, we combine shared bus arbitration policies with rate limiting policies based on critical workload interference to bound the WCET of a critical workload on a multi-core system while doing a best effort to let secondary cores progress as much as possible.Andreu Cerezo, P. (2021). Measuring and Controlling Multicore Contention in a RISC-V System-on-Chip. Universitat Politècnica de València. http://hdl.handle.net/10251/173563TFG

    Comparison of multi-layer bus interconnection and a network on chip solution

    Get PDF
    Abstract. This thesis explains the basic subjects that are required to take in consideration when designing a network on chip solutions in the semiconductor world. For example, general topologies such as mesh, torus, octagon and fat tree are explained. In addition, discussion related to network interfaces, switches, arbitration, flow control, routing, error avoidance and error handling are provided. Furthermore, there is discussion related to design flow, a computer aided designing tools and a few comprehensive researches. However, several networks are designed for the minimum latency, although there are also versions which trade performance for decreased bus widths. These designed networks are compared with a corresponding multi-layer bus interconnection and both synthesis and register transfer level simulations are run. For example, results from throughput, latency, logic area and power consumptions are gathered and compared. It was discovered that overall throughput was well balanced with the network on chip solutions, although its maximum throughput was limited by protocol conversions. For example, the multi-layer bus interconnection was capable of providing a few times smaller latencies and higher throughputs when only a single interface was injected at the time. However, with parallel traffic and high-performance requirements a network on chip solution provided better results, even though the difference decreased when performance requirements were lower. Furthermore, it was discovered that the network on chip solutions required approximately 3–4 times higher total cell area than the multi-layer bus interconnection and that resources were mainly located at network interfaces and switches. In addition, power consumption was approximately 2–3 times higher and was mostly caused by dynamic consumption.Monitasoisen väyläarkkitehtuurin ja tietokoneverkkomaisen ratkaisun vertailua. Tiivistelmä. Tutkielmassa käsitellään tärkeimpiä aihealueita, jotka tulee huomioida suunniteltaessa tietokoneverkkomaisia väyläratkaisuja puolijohdemaailmassa. Esimerkiksi yleiset rakenteet, kuten verkko-, torus-, kahdeksankulmio- ja puutopologiat käsitellään lyhyesti. Lisäksi alustetaan verkon liitäntäkohdat, kytkimet, vuorottelu, vuon hallinta, reititys, virheiden välttely ja -käsittely. Lopuksi kerrotaan suunnitteluvuon oleellisimmat välivaiheet ja niihin soveltuvia kaupallisia työkaluja, sekä käsitellään lyhyesti muutaman aiemman julkaisun tuloksia. Tutkielmassa käytetään suunnittelutyökalua muutaman tietokoneverkkomaisen ratkaisun toteutukseen ja tavoitteena on saavuttaa pienin mahdollinen latenssi. Toisaalta myös hieman suuremman latenssin versioita suunnitellaan, mutta pienemmillä väylänleveyksillä. Lisäksi suunniteltuja tietokoneverkkomaisia ratkaisuja vertaillaan perinteisempään monitasoiseen väyläarkkitehtuuriin. Esimerkiksi synteesi- ja simulaatiotuloksia, kuten logiikan vaatimaa pinta-alaa, tehonkulutusta, latenssia ja suorituskykyä, vertaillaan keskenään. Tutkielmassa selvisi, että suunnittelutyökalulla toteutetut tietokoneverkkomaiset ratkaisut mahdollistivat tasaisemman suorituskyvyn, joskin niiden suurin saavutettu suorituskyky ja pienin latenssi määräytyivät protokollan käännöksen aiheuttamasta viiveestä. Tutkielmassa havaittiin, että perinteisemmillä menetelmillä saavutettiin noin kaksi kertaa suurempi suorituskyky ja pienempi latenssi, kun verkossa ei ollut muuta liikennettä. Rinnakkaisen liikenteen lisääntyessä tietokoneverkkomainen ratkaisu tarjosi keskimäärin paremman suorituskyvyn, kun sille asetetut tehokkuusvaateet olivat suuret, mutta suorituskykyvaatimuksien laskiessa erot kapenivat. Lisäksi huomattiin, että tietokoneverkkomaisten ratkaisujen käyttämä pinta-ala oli noin 3–4 kertaa suurempi kuin monitasoisella väyläarkkitehtuurilla ja että resurssit sijaitsivat enimmäkseen verkon liittymäkohdissa ja kytkimissä. Lisäksi tehonkulutuksen huomattiin olevan noin 2–3 kertaa suurempi, joskin sen havaittiin koostuvan pääosin dynaamisesta kulutuksesta

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    The Design of Medium Access Control (MAC) Protocols for Energy Efficient and QoS Provision in Wireless Sensor Networks

    Get PDF
    This thesis work focuses on innovative design of media access control (MAC) protocols in wireless sensor networks (WNSs). The characteristics of the WSN inquire that the network service design considers both energy efficiency and the associated application requirement. However, most existing protocols address only the issue of energy efficiency. In this thesis, a MAC protocol has been proposed (referred to as Q-MAC) that not only minimized the energy consumption in multi-hop WSNs, but also provides Quality of Service (QoS) by differentiating network services based on priority levels prescribed by different applications. The priority levels reflect the state of system resources including residual energy and queue occupancies. Q-MAC contains both intra- and inter- node arbitration mechanisms. The intra-node packet scheduling employs a multiple queuing architectures, and applies a scheduling scheme consisting of packet classification and weighted arbitration. We introduce the Power Conservation MACAW (PC-MACAW), a power-aware scheduling mechanism which, together with the Loosely Prioritized Random Access (LPRA) algorithm, govern the inter-node scheduling. Performance evaluation are conducted between Q-MAC and S-MAC with respect to two performance metrics: energy consumption and average latency. Simulation results indicate Q-MAC achieves comparable performance to that of S-MAC in non-prioritized traffic scenarios. When packets with different priorities are introduced, Q-MAC yields noticeable average latency differentiations between the classes of service, while preserving the same degree of energy consumption as that of S-MAC. Since the high density nature of WSN may introduce heavy traffic load and thus consume large amount of energy for communication, another MAC protocol, referred to as the Deployment-oriented MAC (D-MAC)has been further proposed. D-MAC minimalizes both sensing and communication redundancy by putting majority of redundant nodes into the sleep state. The idea is to establish a sensing and communication backbone covering the whole sensing field with the least sensing and communication redundancy. In specific, we use equal-size rectangular cells to partition the sensing field and chose the size of each cell in a way such that regardless of the actual location within the cell, a node can always sense the whole cell and communicate with all the nodes in neighboring cells. Once the sensing field has been partitioned using these cells, a localized Location-aware Selection Algorithm (LSA) is carried out to pick up only one node within each cell to be active for a fixed amount of period. This selection is energy-oriented, only nodes with a maximum energy will be on and the rest of nodes will be put into the sleep state once the selection process is over. To balance the energy consumption, the selection algorithm is periodically conducted until all the nodes are out of power. Simulation results indicated that D-MAC saves around 80% energy compared to that of S-MAC and Q-MAC, while maintaining 99% coverage. D-MAC is also superior to S-MAC and Q-MAC in terms of average latency. However, the use of GPS in D-MAC in identifying the nodes within the same cell, would cause extra cost and complexity for the design of sensor nodes
    corecore