203 research outputs found

    Knapsack Problems with Side Constraints

    Get PDF
    The thesis considers a specific class of resource allocation problems in Combinatorial Optimization: the Knapsack Problems. These are paradigmatic NP-hard problems where a set of items with given profits and weights is available. The aim is to select a subset of the items in order to maximize the total profit without exceeding a known knapsack capacity. In the classical 0-1 Knapsack Problem (KP), each item can be picked at most once. The focus of the thesis is on four generalizations of KP involving side constraints beyond the capacity bound. More precisely, we provide solution approaches and insights for the following problems: The Knapsack Problem with Setups; the Collapsing Knapsack Problem; the Penalized Knapsack Problem; the Incremental Knapsack Problem. These problems reveal challenging research topics with many real-life applications. The scientific contributions we provide are both from a theoretical and a practical perspective. On the one hand, we give insights into structural elements and properties of the problems and derive a series of approximation results for some of them. On the other hand, we offer valuable solution approaches for direct applications of practical interest or when the problems considered arise as sub-problems in broader contexts

    Bin Packing and Related Problems: General Arc-flow Formulation with Graph Compression

    Full text link
    We present an exact method, based on an arc-flow formulation with side constraints, for solving bin packing and cutting stock problems --- including multi-constraint variants --- by simply representing all the patterns in a very compact graph. Our method includes a graph compression algorithm that usually reduces the size of the underlying graph substantially without weakening the model. As opposed to our method, which provides strong models, conventional models are usually highly symmetric and provide very weak lower bounds. Our formulation is equivalent to Gilmore and Gomory's, thus providing a very strong linear relaxation. However, instead of using column-generation in an iterative process, the method constructs a graph, where paths from the source to the target node represent every valid packing pattern. The same method, without any problem-specific parameterization, was used to solve a large variety of instances from several different cutting and packing problems. In this paper, we deal with vector packing, graph coloring, bin packing, cutting stock, cardinality constrained bin packing, cutting stock with cutting knife limitation, cutting stock with binary patterns, bin packing with conflicts, and cutting stock with binary patterns and forbidden pairs. We report computational results obtained with many benchmark test data sets, all of them showing a large advantage of this formulation with respect to the traditional ones

    Improvement of the branch and bound algorithm for solving the knapsack linear integer problem

    Get PDF
    The paper presents a new reformulation approach to reduce the complexity of a branch and bound algorithm for solving the knapsack linear integer problem. The branch and bound algorithm in general relies on the usual strategy of first relaxing the integer problem into a linear programing (LP) model. If the linear programming optimal solution is integer then, the optimal solution to the integer problem is available. If the linear programming optimal solution is not integer, then a variable with a fractional value is selected to create two sub-problems such that part of the feasible region is discarded without eliminating any of the feasible integer solutions. The process is repeated on all variables with fractional values until an integer solution is found. In this approach variable sum and additional constraints are generated and added to the original problem before solving. In order to do this the objective bound of knapsack problem is quickly determined. The bound is then used to generate a set of variable sum limits and four additional constraints. From the variable sum limits, initial sub-problems are constructed and solved. The optimal solution is then obtained as the best solution from all the sub-problems in terms of the objective value. The proposed procedure results in sub-problems that have reduced complexity and easier to solve than the original problem in terms of numbers of branch and bound iterations or sub-problems.The knapsack problem is a special form of the general linear integer problem. There are so many types of knapsack problems. These include the zero-one, multiple, multiple-choice, bounded, unbounded, quadratic, multi-objective, multi-dimensional, collapsing zero-one and set union knapsack problems. The zero-one knapsack problem is one in which the variables assume 0 s and 1 s only. The reason is that an item can be chosen or not chosen. In other words there is no way it is possible to have fractional amounts or items. This is the easiest class of the knapsack problems and is the only one that can be solved in polynomial by interior point algorithms and in pseudo-polynomial time by dynamic programming approaches. The multiple-choice knapsack problem is a generalization of the ordinary knapsack problem, where the set of items is partitioned into classes. The zero-one choice of taking an item is replaced by the selection of exactly one item out of each class of item

    Improvement of the branch and bound algorithm for solving the knapsack linear integer problem

    Get PDF
    The paper presents a new reformulation approach to reduce the complexity of a branch and bound algorithm for solving the knapsack linear integer problem. The branch and bound algorithm in general relies on the usual strategy of first relaxing the integer problem into a linear programing (LP) model. If the linear programming optimal solution is integer then, the optimal solution to the integer problem is available. If the linear programming optimal solution is not integer, then a variable with a fractional value is selected to create two sub-problems such that part of the feasible region is discarded without eliminating any of the feasible integer solutions. The process is repeated on all variables with fractional values until an integer solution is found. In this approach variable sum and additional constraints are generated and added to the original problem before solving. In order to do this the objective bound of knapsack problem is quickly determined. The bound is then used to generate a set of variable sum limits and four additional constraints. From the variable sum limits, initial sub-problems are constructed and solved. The optimal solution is then obtained as the best solution from all the sub-problems in terms of the objective value. The proposed procedure results in sub-problems that have reduced complexity and easier to solve than the original problem in terms of numbers of branch and bound iterations or sub-problems.The knapsack problem is a special form of the general linear integer problem. There are so many types of knapsack problems. These include the zero-one, multiple, multiple-choice, bounded, unbounded, quadratic, multi-objective, multi-dimensional, collapsing zero-one and set union knapsack problems. The zero-one knapsack problem is one in which the variables assume 0 s and 1 s only. The reason is that an item can be chosen or not chosen. In other words there is no way it is possible to have fractional amounts or items. This is the easiest class of the knapsack problems and is the only one that can be solved in polynomial by interior point algorithms and in pseudo-polynomial time by dynamic programming approaches. The multiple-choice knapsack problem is a generalization of the ordinary knapsack problem, where the set of items is partitioned into classes. The zero-one choice of taking an item is replaced by the selection of exactly one item out of each class of item

    Reoptimization in lagrangian methods for the quadratic knapsack problem

    No full text
    International audienceThe 0-1 quadratic knapsack problem consists in maximizing a quadratic objective function subject to a linear capacity constraint. To solve exactly large instances of this problem with a tree search algorithm (e.g. a branch and bound method), the knowledge of good lower and upper bounds is crucial for pruning the tree but also for fixing as many variables as possible in a preprocessing phase. The upper bounds used in the best known exact approaches are based on Lagrangian relaxation and decomposition. It appears that the computation of these Lagrangian dual bounds involves the resolution of numerous 0-1 linear knapsack subproblems. Thus, taking this huge number of solvings into account, we propose to embed reoptimization techniques for improving the efficiency of the preprocessing phase of the 0-1 quadratic knapsack resolution. Namely, reoptimization is introduced to accelerate each independent sequence of 0-1 linear knapsack problems induced by the Lagrangian relaxation as well as the Lagrangian decomposition. Numerous numerical experiments validate the relevance of our approach

    An exact approach for the bilevel knapsack problem with interdiction constraints and extensions

    Get PDF
    We consider the bilevel knapsack problem with interdiction constraints, an extension of the classic 0–1 knapsack problem formulated as a Stackelberg game with two agents, a leader and a follower, that choose items from a common set and hold their own private knapsacks. First, the leader selects some items to be interdicted for the follower while satisfying a capacity constraint. Then the follower packs a set of the remaining items according to his knapsack constraint in order to maximize the profits. The goal of the leader is to minimize the follower’s total profit. We derive effective lower bounds for the bilevel knapsack problem and present an exact method that exploits the structure of the induced follower’s problem. The approach strongly outperforms the current state-of-the-art algorithms designed for the problem. We extend the same algorithmic framework to the interval min–max regret knapsack problem after providing a novel bilevel programming reformulation. Also for this problem, the proposed approach outperforms the exact algorithms available in the literature
    corecore