126 research outputs found

    Weighted tardiness minimization for unrelated machines with sequence-dependent and resource-constrained setups

    Full text link
    Motivated by the need of quick job (re-)scheduling, we examine an elaborate scheduling environment under the objective of total weighted tardiness minimization. The examined problem variant moves well beyond existing literature, as it considers unrelated machines, sequence-dependent and machine-dependent setup times and a renewable resource constraint on the number of simultaneous setups. For this variant, we provide a relaxed MILP to calculate lower bounds, thus estimating a worst-case optimality gap. As a fast exact approach appears not plausible for instances of practical importance, we extend known (meta-)heuristics to deal with the problem at hand, coupling them with a Constraint Programming (CP) component - vital to guarantee the non-violation of the problem's constraints - which optimally allocates resources with respect to tardiness minimization. The validity and versatility of employing different (meta-)heuristics exploiting a relaxed MILP as a quality measure is revealed by our extensive experimental study, which shows that the methods deployed have complementary strengths depending on the instance parameters. Since the problem description has been obtained from a textile manufacturer where jobs of diverse size arrive continuously under tight deadlines, we also discuss the practical impact of our approach in terms of both tardiness decrease and broader managerial insights

    Size-reduction heuristics for the unrelated parallel machines scheduling problem

    Full text link
    [EN] In this paper we study the unrelated parallel machines problem where n independent jobs must be assigned to one out of m parallel machines and the processing time of each job differs from machine to machine. We deal with the objective of the minimisation of the maximum completion time of the jobs, usually referred to as makespan or Cmax. This is a type of assignment problem that has been frequently studied in the scienti¿c literature due to its many potential applications. We propose a set of metaheuristics based on a size-reduction of the original assignment problem that produce solutions of very good quality in a short amount of time. The underlying idea is to consider only a few of the best possible machine assignments for the jobs and not all of them. The results are simple, yet powerful methods. We test the proposed algorithms with a large benchmark of instances and compare them with current state-of-the-art methods. In most cases, the proposed size-reduction algorithms produce results that are statistically proven to be better by a signi¿cant margin. & 2010 Elsevier Ltd. All rights reservedThis work is partially funded by the Spanish Ministry of Science and Innovation, under the project ‘‘SMPA—Advanced Parallel Multiobjective Sequencing: Practical and Theoretical Advances’’ with references number DPI2008-03511/DPI. The authors should also thank the IMPIVA—Institute for the Small and Medium Valencian Enterprise, for the project OSC with reference IMIDIC/2008/137 and the Polytechnic University of Valencia, for the project PPAR with reference 3147.Fanjul Peyró, L.; Ruiz García, R. (2011). Size-reduction heuristics for the unrelated parallel machines scheduling problem. Computers and Operations Research. 38(1):301-309. https://doi.org/10.1016/j.cor.2010.05.005S30130938

    Deterministic Assembly Scheduling Problems: A Review and Classification of Concurrent-Type Scheduling Models and Solution Procedures

    Get PDF
    Many activities in industry and services require the scheduling of tasks that can be concurrently executed, the most clear example being perhaps the assembly of products carried out in manufacturing. Although numerous scientific contributions have been produced on this area over the last decades, the wide extension of the problems covered and the lack of a unified approach have lead to a situation where the state of the art in the field is unclear, which in turn hinders new research and makes translating the scientific knowledge into practice difficult. In this paper we propose a unified notation for assembly scheduling models that encompass all concurrent-type scheduling problems. Using this notation, the existing contributions are reviewed and classified into a single framework, so a comprehensive, unified picture of the field is obtained. In addition, a number of conclusions regarding the state of the art in the topic are presented, as well as some opportunities for future research.Ministerio de Ciencia e Innovación español DPI2016-80750-

    One Benders cut to rule all schedules in the neighbourhood

    Full text link
    Logic-Based Benders Decomposition (LBBD) and its Branch-and-Cut variant, namely Branch-and-Check, enjoy an extensive applicability on a broad variety of problems, including scheduling. Although LBBD offers problem-specific cuts to impose tighter dual bounds, its application to resource-constrained scheduling remains less explored. Given a position-based Mixed-Integer Linear Programming (MILP) formulation for scheduling on unrelated parallel machines, we notice that certain kk-OPT neighbourhoods could implicitly be explored by regular local search operators, thus allowing us to integrate Local Branching into Branch-and-Check schemes. After enumerating such neighbourhoods and obtaining their local optima - hence, proving that they are suboptimal - a local branching cut (applied as a Benders cut) eliminates all their solutions at once, thus avoiding an overload of the master problem with thousands of Benders cuts. However, to guarantee convergence to optimality, the constructed neighbourhood should be exhaustively explored, hence this time-consuming procedure must be accelerated by domination rules or selectively implemented on nodes which are more likely to reduce the optimality gap. In this study, the realisation of this idea is limited on the common 'internal (job) swaps' to construct formulation-specific 44-OPT neighbourhoods. Nonetheless, the experimentation on two challenging scheduling problems (i.e., the minimisation of total completion times and the minimisation of total tardiness on unrelated machines with sequence-dependent and resource-constrained setups) shows that the proposed methodology offers considerable reductions of optimality gaps or faster convergence to optimality. The simplicity of our approach allows its transferability to other neighbourhoods and different sequencing optimisation problems, hence providing a promising prospect to improve Branch-and-Check methods

    A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem

    Get PDF
    As the interest of practitioners and researchers in scheduling in a multi-factory environment is growing, there is an increasing need to provide efficient algorithms for this type of decision problems, characterised by simultaneously addressing the assignment of jobs to different factories/workshops and their subsequent scheduling. Here we address the so-called distributed permutation flowshop scheduling problem, in which a set of jobs has to be scheduled over a number of identical factories, each one with its machines arranged as a flowshop. Several heuristics have been designed for this problem, although there is no direct comparison among them. In this paper, we propose a new heuristic which exploits the specific structure of the problem. The computational experience carried out on a well-known testbed shows that the proposed heuristic outperforms existing state-of-the-art heuristics, being able to obtain better upper bounds for more than one quarter of the problems in the testbed.Ministerio de Ciencia e Innovación DPI2010-15573/DP

    Constructive heuristics for the unrelated parallel machines scheduling problem with machine eligibility and setup times

    Get PDF
    This work considers a scheduling problem identified in a factory producing customised Heating, Ventilation and Air Conditioning (HVAC) equipment. More specifically, the metal folding section is modelled as unrelated parallel machines with machine eligibility and sequence-dependent setup times. The objective under consideration is the minimisation of the total tardiness. The problem is known to be NP-hard so approximate methods are needed to solve real-size instances. In order to embed the scheduling procedure into a decision support system providing high-quality solutions in nearly real time, the goal of this paper is to develop fast, efficient constructive heuristics for the problem. Due to the lack of methods for this specific problem, some existing heuristics and one metaheuristic are selected from related problems and adapted. In addition, a set of heuristics with novel repair and improvement phases are proposed. The performance of the methods adapted and the proposals are compared with the optimal/approximate solutions obtained by a solver for an MILP in two sets of instances with small and medium sizes. Additionally, big-size instances (representing more realistic cases for our company) have been solved using the proposed constructive heuristics, providing efficient solutions in negligible computational times. Even if the adaptation of heuristics performs reasonably well, these are outperformed by the new heuristic proposed in this paper. In addition, when the new heuristic is embedded in the metaheuristic adapted from a related the problem, the results obtained are excellent in terms of the quality of the solution, even if the computational effort is somewhat higher.Ministerio de Ciencia en Innovación. “PROMISE

    Multi-objective enhanced memetic algorithm for green job shop scheduling with uncertain times

    Get PDF
    The quest for sustainability has arrived to the manufacturing world, with the emergence of a research field known as green scheduling. Traditional performance objectives now co-exist with energy-saving ones. In this work, we tackle a job shop scheduling problem with the double goal of minimising energy consumption during machine idle time and minimising the project’s makespan. We also consider uncertainty in processing times, modelled with fuzzy numbers. We present a multi-objective optimisation model of the problem and we propose a new enhanced memetic algorithm that combines a multiobjective evolutionary algorithm with three procedures that exploit the problem-specific available knowledge. Experimental results validate the proposed method with respect to hypervolume, -indicator and empirical attaintment functions

    Maintenance activities scheduling under competencies constraints.

    No full text
    International audienceCompetencies management in the industry is one of the most important keys in order to obtain good performance with production means. Especially in maintenance services field where the different practical knowledges or skills are their working tools. We propose here a methodology, which compares the human resource with parallel machine. As human resource competence levels of each are all differents, they are considered like unrelated parallel machines. Our aim is to assign tasks to the adequate resources by minimizing time treatment for each task and the makespan

    Efficient heuristics for the hybrid flow shop scheduling problem with missing operations

    Get PDF
    In this paper, we address the hybrid flowshop scheduling problem for makespan minimisation. More specifically, we are interested in the special case where there are missing operations, i.e. some stages are skipped, a condition inspired in a realistic problem found in a plastic manufacturer. The main contribution of our paper is twofold. On the one hand we carry out a computational analysis to study the hardness of the hybrid flowshop scheduling problem with missing operations as compared to the classical hybrid flowshop problem. On the other hand, we propose a set of heuristics that captures some special features of the missing operations and compare these algorithms with already existing heuristics for the classical hybrid flowshop, and for the hybrid flowshop problem with missing operations. The extensive computational experience carried out shows that our proposal outperforms existing methods for the problem, indicating that it is possible to improve the makespan by interacting with the jobs with missing operations.Ministerio de Ciencia e Innovación DPI2016-80750-

    Static et dynamic scheduling of maintenance activities under the constraints of skills.

    No full text
    International audienceSkill management in industry is one of the most important factors required in order to obtain optimal performance of the production system. This is of particular importance in the field of maintenance where the different practical knowledge or skills are the working tools used. We address, in this paper, both the assignment and scheduling problems that may be found in a maintenance service. Each task that has to be performed is characterized by the level of skill required. The problem lies with making the decision of which time is the right time for the assignment and scheduling of the correct resource to do the task. We introduce both static and dynamic scheduling, applied to the maintenance task assignment. To confer a maximum robustness to the obtained schedule, tha approach proposed in this paper is completed by a proactive methodology which takes into account possible variations
    corecore