9,588 research outputs found

    Coalitional Games with Overlapping Coalitions for Interference Management in Small Cell Networks

    Full text link
    In this paper, we study the problem of cooperative interference management in an OFDMA two-tier small cell network. In particular, we propose a novel approach for allowing the small cells to cooperate, so as to optimize their sum-rate, while cooperatively satisfying their maximum transmit power constraints. Unlike existing work which assumes that only disjoint groups of cooperative small cells can emerge, we formulate the small cells' cooperation problem as a coalition formation game with overlapping coalitions. In this game, each small cell base station can choose to participate in one or more cooperative groups (or coalitions) simultaneously, so as to optimize the tradeoff between the benefits and costs associated with cooperation. We study the properties of the proposed overlapping coalition formation game and we show that it exhibits negative externalities due to interference. Then, we propose a novel decentralized algorithm that allows the small cell base stations to interact and self-organize into a stable overlapping coalitional structure. Simulation results show that the proposed algorithm results in a notable performance advantage in terms of the total system sum-rate, relative to the noncooperative case and the classical algorithms for coalitional games with non-overlapping coalitions

    The 5G Cellular Backhaul Management Dilemma: To Cache or to Serve

    Full text link
    With the introduction of caching capabilities into small cell networks (SCNs), new backaul management mechanisms need to be developed to prevent the predicted files that are downloaded by the at the small base stations (SBSs) to be cached from jeopardizing the urgent requests that need to be served via the backhaul. Moreover, these mechanisms must account for the heterogeneity of the backhaul that will be encompassing both wireless backhaul links at various frequency bands and a wired backhaul component. In this paper, the heterogeneous backhaul management problem is formulated as a minority game in which each SBS has to define the number of predicted files to download, without affecting the required transmission rate of the current requests. For the formulated game, it is shown that a unique fair proper mixed Nash equilibrium (PMNE) exists. Self-organizing reinforcement learning algorithm is proposed and proved to converge to a unique Boltzmann-Gibbs equilibrium which approximates the desired PMNE. Simulation results show that the performance of the proposed approach can be close to that of the ideal optimal algorithm while it outperforms a centralized greedy approach in terms of the amount of data that is cached without jeopardizing the quality-of-service of current requests.Comment: Accepted for publication at Transactions on Wireless Communication

    Matching Theory for Backhaul Management in Small Cell Networks with mmWave Capabilities

    Full text link
    Designing cost-effective and scalable backhaul solutions is one of the main challenges for emerging wireless small cell networks (SCNs). In this regard, millimeter wave (mmW) communication technologies have recently emerged as an attractive solution to realize the vision of a high-speed and reliable wireless small cell backhaul network (SCBN). In this paper, a novel approach is proposed for managing the spectral resources of a heterogeneous SCBN that can exploit simultaneously mmW and conventional frequency bands via carrier aggregation. In particular, a new SCBN model is proposed in which small cell base stations (SCBSs) equipped with broadband fiber backhaul allocate their frequency resources to SCBSs with wireless backhaul, by using aggregated bands. One unique feature of the studied model is that it jointly accounts for both wireless channel characteristics and economic factors during resource allocation. The problem is then formulated as a one-to-many matching game and a distributed algorithm is proposed to find a stable outcome of the game. The convergence of the algorithm is proven and the properties of the resulting matching are studied. Simulation results show that under the constraints of wireless backhauling, the proposed approach achieves substantial performance gains, reaching up to 30%30 \% compared to a conventional best-effort approach.Comment: In Proc. of the IEEE International Conference on Communications (ICC), Mobile and Wireless Networks Symposium, London, UK, June 201

    Game-theoretic Resource Allocation Methods for Device-to-Device (D2D) Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks allows mobile devices such as smartphones and tablets to use the licensed spectrum allocated to cellular services for direct peer-to-peer transmission. D2D communication can use either one-hop transmission (i.e., in D2D direct communication) or multi-hop cluster-based transmission (i.e., in D2D local area networks). The D2D devices can compete or cooperate with each other to reuse the radio resources in D2D networks. Therefore, resource allocation and access for D2D communication can be treated as games. The theories behind these games provide a variety of mathematical tools to effectively model and analyze the individual or group behaviors of D2D users. In addition, game models can provide distributed solutions to the resource allocation problems for D2D communication. The aim of this article is to demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication. The article also outlines several key open research directions.Comment: Accepted. IEEE Wireless Comms Mag. 201

    A framework for smart production-logistics systems based on CPS and industrial IoT

    Get PDF
    Industrial Internet of Things (IIoT) has received increasing attention from both academia and industry. However, several challenges including excessively long waiting time and a serious waste of energy still exist in the IIoT-based integration between production and logistics in job shops. To address these challenges, a framework depicting the mechanism and methodology of smart production-logistics systems is proposed to implement intelligent modeling of key manufacturing resources and investigate self-organizing configuration mechanisms. A data-driven model based on analytical target cascading is developed to implement the self-organizing configuration. A case study based on a Chinese engine manufacturer is presented to validate the feasibility and evaluate the performance of the proposed framework and the developed method. The results show that the manufacturing time and the energy consumption are reduced and the computing time is reasonable. This paper potentially enables manufacturers to deploy IIoT-based applications and improve the efficiency of production-logistics systems

    Scarcity may promote cooperation in populations of simple agents

    Get PDF
    In the study of the evolution of cooperation, resource limitations are usually assumed just to provide a finite population size. Recently, however, it has been pointed out that resource limitation may also generate dynamical payoffs able to modify the original structure of the games. Here we study analytically a phase transition from a homogeneous population of defectors when resources are abundant to the survival of unconditional cooperators when resources reduce below a threshold. To this end, we introduce a model of simple agents, with no memory or ability of recognition, interacting in well-mixed populations. The result might shed light on the role played by resource constraints on the origin of multicellularity.Comment: 5 pages, 2 figure
    corecore