846 research outputs found

    Network hierarchy evolution and system vulnerability in power grids

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.The seldom addressed network hierarchy property and its relationship with vulnerability analysis for power transmission grids from a complex-systems point of view are given in this paper. We analyze and compare the evolution of network hierarchy for the dynamic vulnerability evaluation of four different power transmission grids of real cases. Several meaningful results suggest that the vulnerability of power grids can be assessed by means of a network hierarchy evolution analysis. First, the network hierarchy evolution may be used as a novel measurement to quantify the robustness of power grids. Second, an antipyramidal structure appears in the most robust network when quantifying cascading failures by the proposed hierarchy metric. Furthermore, the analysis results are also validated and proved by empirical reliability data. We show that our proposed hierarchy evolution analysis methodology could be used to assess the vulnerability of power grids or even other networks from a complex-systems point of view.Peer ReviewedPostprint (author's final draft

    Dependability analysis and recovery support for smart grids

    Get PDF
    The increasing scale and complexity of power grids exacerbate concerns about failure propagation. A single contingency, such as outage of a transmission line due to overload or weather-related damage, can cause cascading failures that manifest as blackouts. One objective of smart grids is to reduce the likelihood of cascading failure through the use of power electronics devices that can prevent, isolate, and mitigate the effects of faults. Given that these devices are themselves prone to failure, we seek to quantify the effects of their use on dependability attributes of smart grid. This thesis articulates analytical methods for analyzing two dependability attributes - reliability and survivability - and proposes a recovery strategy that limits service degradation. Reliability captures the probability of system-level failure; Survivability describes degraded operation in the presence of a fault. System condition and service capacity are selected as measures of degradation. Both reliability and survivability are evaluated using N-1 contingency analysis. Importance analysis is used to determine a recovery strategy that maintains the highest survivability in the course of the recovery process. The proposed methods are illustrated by application to the IEEE 9-bus test system, a simple model system that allows for clear articulation of the process. Simulation is used to capture the effect of faults in both physical components of the power grid and the cyber infrastructure that differentiates it as a smart grid --Abstract, page iii

    Intelligent Novel Methods for Identifying Critical Components and Their Combinations for Hypothesized Cyber-physical Attacks Against Electric Power Grids

    Get PDF
    As a revolutionary change to the traditional power grid, the smart grid is expected to introduce a myriad of noteworthy benefits by integrating the advanced information and communication technologies in terms of system costs, reliability, environmental impacts, operational flexibility, etc. However, the wider deployment of cyber networks in the power grid will bring about important issues on power system cyber security. Meanwhile, the power grid is becoming more vulnerable to various physical attacks due to vandalism and probable terrorist attacks. In an envisioned smart grid environment, attackers have more entry points to various parts of the power grid for launching a well-planned and highly destructive attack in a coordinated manner. Thus, it is important to address the smart grid cyber-physical security issues in order to strengthen the robustness and resiliency of the smart grid in the face of various adverse events. One key step of this research topic is to efficiently identify the vulnerable parts of the smart grid. In this thesis, from the perspective of smart grid cyber-physical security, three critical component combination identification methods are proposed to reveal the potential vulnerability of the smart grid. First, two performance indices based critical component combination recognition methods are proposed for more effectively identifying the critical component combinations in the multi-component attack scenarios. The optimal selection of critical components is determined according to the criticality of the components, which can be modeled by various performance indices. Further, the space-pruning based enumerative search strategy is investigated to comprehensively and effectively identify critical combinations of multiple same or different types of components. The pruned search space is generated based on the criticality of potential target component which is obtained from low-order enumeration data. Specifically, the combinatorial line-generator attack strategy is investigated by exploring the strategy for attacking multiple different types of components. Finally, an effective, novel approach is proposed for identifying critical component combinations, which is termed search space conversion and reduction strategy based intelligent search method (SCRIS). The conversion and reduction of the search space is achieved based on the criticality of the components which is obtained from an efficient sampling method. The classic intelligent search algorithm, Particle Swarm Optimization (PSO), is improved and deployed for more effectively identifying critical component combinations. MATLAB is used as the simulation platform in this study. The IEEE 30, 39, 118 and Polish 2383-bus systems are adopted for verifying the effectiveness of the proposed attack strategies. According to the simulation results, the proposed attack strategies turn out to be effective and computationally efficient. This thesis can provide some useful insight into vulnerability identification in a smart grid environment, and defensive strategies can be developed in view of this work to prevent malicious coordinated multi-component attacks which may initiate cascading failures in a cyber-physical environment

    Deep Learning Techniques for Power System Operation: Modeling and Implementation

    Get PDF
    The fast development of the deep learning (DL) techniques in the most recent years has drawn attention from both academia and industry. And there have been increasing applications of the DL techniques in many complex real-world situations, including computer vision, medical diagnosis, and natural language processing. The great power and flexibility of DL can be attributed to its hierarchical learning structure that automatically extract features from mass amounts of data. In addition, DL applies an end-to-end solving mechanism, and directly generates the output from the input, where the traditional machine learning methods usually break down the problem and combine the results. The end-to-end mechanism considerably improve the computational efficiency of the DL.The power system is one of the most complex artificial infrastructures, and many power system control and operation problems share the same features as the above mentioned real-world applications, such as time variability and uncertainty, partial observability, which impedes the performance of the conventional model-based methods. On the other hand, with the wide spread implementation of Advanced Metering Infrastructures (AMI), the SCADA, the Wide Area Monitoring Systems (WAMS), and many other measuring system providing massive data from the field, the data-driven deep learning technique is becoming an intriguing alternative method to enable the future development and success of the smart grid. This dissertation aims to explore the potential of utilizing the deep-learning-based approaches to solve a broad range of power system modeling and operation problems. First, a comprehensive literature review is conducted to summarize the existing applications of deep learning techniques in power system area. Second, the prospective application of deep learning techniques in several scenarios in power systems, including contingency screening, cascading outage search, multi-microgrid energy management, residential HVAC system control, and electricity market bidding are discussed in detail in the following 2-6 chapters. The problem formulation, the specific deep learning approaches in use, and the simulation results are all presented, and also compared with the currently used model-based method as a verification of the advantage of deep learning. Finally, the conclusions are provided in the last chapter, as well as the directions for future researches. It’s hoped that this dissertation can work as a single spark of fire to enlighten more innovative ideas and original studies, widening and deepening the application of deep learning technique in the field of power system, and eventually bring some positive impacts to the real-world bulk grid resilient and economic control and operation

    Identification of key players in networks using multi-objective optimization and its applications

    Get PDF
    Identification of a set of key players, is of interest in many disciplines such as sociology, politics, finance, economics, etc. Although many algorithms have been proposed to identify a set of key players, each emphasizes a single objective of interest. Consequently, the prevailing deficiency of each of these methods is that, they perform well only when we consider their objective of interest as the only characteristic that the set of key players should have. But in complicated real life applications, we need a set of key players which can perform well with respect to multiple objectives of interest. In this dissertation, a new perspective for key player identification is proposed, based on optimizing multiple objectives of interest. The proposed approach is useful in identifying both key nodes and key edges in networks. Experimental results show that the sets of key players which optimize multiple objectives perform better than the key players identified using existing algorithms, in multiple applications such as eventual influence limitation problem, immunization problem, improving the fault tolerance of the smart grid, etc. We utilize multi-objective optimization algorithms to optimize a set of objectives for a particular application. A large number of solutions are obtained when the number of objectives is high and the objectives are uncorrelated. But decision-makers usually require one or two solutions for their applications. In addition, the computational time required for multi-objective optimization increases with the number of objectives. A novel approach to obtain a subset of the Pareto optimal solutions is proposed and shown to alleviate the aforementioned problems. As the size and the complexity of the networks increase, so does the computational effort needed to compute the network analysis measures. We show that degree centrality based network sampling can be used to reduce the running times without compromising the quality of key nodes obtained

    Smart Grid for the Smart City

    Get PDF
    Modern cities are embracing cutting-edge technologies to improve the services they offer to the citizens from traffic control to the reduction of greenhouse gases and energy provisioning. In this chapter, we look at the energy sector advocating how Information and Communication Technologies (ICT) and signal processing techniques can be integrated into next generation power grids for an increased effectiveness in terms of: electrical stability, distribution, improved communication security, energy production, and utilization. In particular, we deliberate about the use of these techniques within new demand response paradigms, where communities of prosumers (e.g., households, generating part of their electricity consumption) contribute to the satisfaction of the energy demand through load balancing and peak shaving. Our discussion also covers the use of big data analytics for demand response and serious games as a tool to promote energy-efficient behaviors from end users

    The State-of-the-Art Survey on Optimization Methods for Cyber-physical Networks

    Full text link
    Cyber-Physical Systems (CPS) are increasingly complex and frequently integrated into modern societies via critical infrastructure systems, products, and services. Consequently, there is a need for reliable functionality of these complex systems under various scenarios, from physical failures due to aging, through to cyber attacks. Indeed, the development of effective strategies to restore disrupted infrastructure systems continues to be a major challenge. Hitherto, there have been an increasing number of papers evaluating cyber-physical infrastructures, yet a comprehensive review focusing on mathematical modeling and different optimization methods is still lacking. Thus, this review paper appraises the literature on optimization techniques for CPS facing disruption, to synthesize key findings on the current methods in this domain. A total of 108 relevant research papers are reviewed following an extensive assessment of all major scientific databases. The main mathematical modeling practices and optimization methods are identified for both deterministic and stochastic formulations, categorizing them based on the solution approach (exact, heuristic, meta-heuristic), objective function, and network size. We also perform keyword clustering and bibliographic coupling analyses to summarize the current research trends. Future research needs in terms of the scalability of optimization algorithms are discussed. Overall, there is a need to shift towards more scalable optimization solution algorithms, empowered by data-driven methods and machine learning, to provide reliable decision-support systems for decision-makers and practitioners

    Analysis and modeling of resilience for networked systems

    Get PDF
    A cyber physical system (CPS) has two main subsystems; a physical infrastructure that is responsible for managing and implementing physical tasks, e.g., generation and distribution of a physical commodity, and a cyber infrastructure that is used to support and enhance these physical operations through computing, communication, and control. Imperfect cyber control can lower the efficacy and even reliability of existing physical infrastructures. As such, justifiable reliance on CPSs requires rigorous investigation of the effect of incorporating cyber infrastructure on functional and non-functional aspects of system performance. One non-functional metric of note is resilience, defined as the ability of a system to bounce back from a disrupted state to what is considered as an acceptable performance. This dissertation proposes a deterministic and non-deterministic model for resilience of networked CPSs. The model is illustrated through application to a nine-bus power grid. Multiple disruptive events are considered, and associated figures of merit are defined, with the overall objective of representing system-level resilience as a function of component restoration time - assumed to be both deterministic and non-deterministic. The proposed technique can also be used to rank components based on their impact on system resilience. The model is validated through discrete event simulation. --Abstract, page iii

    Integrated risk assessment for robustness evaluation and resilience optimisation of power systems after cascading failures

    Get PDF
    Power systems face failures, attacks and natural disasters on a daily basis, making robustness and resilience an important topic. In an electrical network, robustness is a network’s ability to withstand and fully operate under the effects of failures, while resilience is the ability to rapidly recover from such disruptive events and adapt its structure to mitigate the impact of similar events in the future. This paper presents an integrated framework for jointly assessing these concepts using two complementary algorithms. The robustness model, which is based on a cascading failure algorithm, quantifies the degradation of the power network due to a cascading event, incorporating the circuit breaker protection mechanisms of the power lines. The resilience model is posed as a mixed-integer optimisation problem and uses the previous disintegration state to determine both the optimal dispatch and topology at each restoration stage. To demonstrate the applicability of the proposed framework, the IEEE 118-bus test network is used as a case study. Analyses of the impact of variations in both generation and load are provided for 10 simulation scenarios to illustrate different network operating conditions. The results indicate that a network’s recovery could be related to the overload capacity of the power lines. In other words, a power system with high overload capacity can withstand higher operational stresses, which is related to increased robustness and a faster recovery process
    • …
    corecore