18,478 research outputs found

    Socioeconomic Complexity and the Sociological Tradition: New Wine in Old Bottles

    Get PDF
    Complexity is a purposeful integrating framework for interdisciplinary dialogue, namely between sociologists and economists. After presenting some properties of complex (social) systems, we consider the crucial role of the economic complexity research agenda in challenging the mainstream economic paradigm. This endeavor, we suggest, can greatly benefit from a neglected but relevant aspect, the concern regarding social complexity implicit in the sociological tradition, particularly the emphasis given by Durkheim to the idea of interdependence, a keystone of complexity studies nowadays. As we underline, instead of assuming interdependence/complexity and autonomy/simplicity in a tradeoff relationship, the French sociologist takes interdependence and autonomy as fundamentally complementary and positively correlated characteristics of modern societies. This fact suggests the convenience to conceptualize complexity as a broad socioeconomic, and not just a strict economic, phenomenon. Such a purpose is certainly more damaged than benefited by the existence of the economics/sociology academic divide.Socioeconomic complexity; interdependence; autonomy; sociological tradition; Durkheim

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Tracing the Biological Roots of Knowledge

    Get PDF
    The essay is a critical review of three possible approaches in the theory of knowledge while tracing the biological roots of knowledge: empiricist, rationalist and developmentalist approaches. Piaget's genetic epistemology, a developmentalist approach, is one of the first comprehensive treatments on the question of tracing biological roots of knowledge. This developmental approach is currently opposed, without questioning the biological roots of knowledge, by the more popular rationalist approach, championed by Chomsky. Developmental approaches are generally coherent with cybernetic models, of which the theory of autopoiesis proposed by Maturana and Varela made a significant theoretical move in proposing an intimate connection between metabolism and knowledge. Modular architecture is currently considered more or less an undisputable model for both biology as well as cognitive science. By suggesting that modulation of modules is possible by motor coordination, a proposal is made to account for higher forms of conscious cognition within the four distinguishable layers of the human mind. Towards the end, the problem of life and cognition is discussed in the context of the evolution of complex cognitive systems, suggesting the unique access of phylogeny during the ontogeny of human beings as a very special case, and how the problem cannot be dealt with independent of the evolution of coding systems in nature

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)

    Interlinkages and forecasting made possible by the use of the DECOIN analytical tool kit

    Get PDF
    This technical report is a document prepared as a deliverable [D4.3 Report of the Interlinkages and forecasting prototype tool] of a EU project - DECOIN Project No. 044428 - FP6-2005-SSP-5A. The text is divided into 4 sections: (1) this short introductory section explains the purpose of the report; (2) the second section provides a general discussion of a systemic problem found in existing quantitative analysis of sustainability. It addresses the epistemological implications of complexity, which entails the need of dealing with the existence of Multiple-Scales and non-equivalent narratives (multiple dimensions/attributes) to be used to define sustainability issues. There is an unavoidable tension between a "steady-state view" (= the perception of what is going on now - reflecting a PAST --> PRESENT view of the reality) versus an "evolutionary view" (= the unknown transformation that we have to expect in the process of becoming of the observed reality and in the observer - reflecting a PRESENT --> FUTURE view of the reality). The section ends by listing the implications of these points on the choice of integrated packages of sustainability indicators; (3) the third section illustrates the potentiality of the DECOIN toolkit for the study of sustainability trade-offs and linkages across indicators using quantitative examples taken from cases study of another EU project (SMILE). In particular, this section starts by addressing the existence of internal constraints to sustainability (economic versus social aspects). The narrative chosen for this discussion focuses on the dark side of ageing and immigration on the economic viability of social systems. Then the section continues by exploring external constraints to sustainability (economic development vs the environment). The narrative chosen for this discussion focuses on the dark side of current strategy of economic development based on externalization and the "bubbles-disease"; (4) the last section presents a critical appraisal of the quality of energy data found in energy statistics. It starts with a discussion of the general goal of statistical accounting. Then it introduces the concept of multipurpose grammars. The second part uses the experience made in the activities of the DECOIN project to answer the question: how useful are EUROSTAT energy statistics? The answer starts with an analysis of basic epistemological problems associated with accounting of energy. This discussion leads to the acknowledgment of an important epistemological problem: the unavoidable bifurcations in the mechanism of accounting needed to generate energy statistics. By using numerical example the text deals with the following issues: (i) the pitfalls of the actual system of accounting in energy statistics; (ii) a critical appraisal of the actual system of accounting in BP statistics; (iii) a critical appraisal of the actual system of accounting in Eurostat statistics. The section ends by proposing an innovative method to represent energy statistics which can result more useful for those willing develop sustainability indicators

    Chemical communication between synthetic and natural cells: a possible experimental design

    Get PDF
    The bottom-up construction of synthetic cells is one of the most intriguing and interesting research arenas in synthetic biology. Synthetic cells are built by encapsulating biomolecules inside lipid vesicles (liposomes), allowing the synthesis of one or more functional proteins. Thanks to the in situ synthesized proteins, synthetic cells become able to perform several biomolecular functions, which can be exploited for a large variety of applications. This paves the way to several advanced uses of synthetic cells in basic science and biotechnology, thanks to their versatility, modularity, biocompatibility, and programmability. In the previous WIVACE (2012) we presented the state-of-the-art of semi-synthetic minimal cell (SSMC) technology and introduced, for the first time, the idea of chemical communication between synthetic cells and natural cells. The development of a proper synthetic communication protocol should be seen as a tool for the nascent field of bio/chemical-based Information and Communication Technologies (bio-chem-ICTs) and ultimately aimed at building soft-wet-micro-robots. In this contribution (WIVACE, 2013) we present a blueprint for realizing this project, and show some preliminary experimental results. We firstly discuss how our research goal (based on the natural capabilities of biological systems to manipulate chemical signals) finds a proper place in the current scientific and technological contexts. Then, we shortly comment on the experimental approaches from the viewpoints of (i) synthetic cell construction, and (ii) bioengineering of microorganisms, providing up-to-date results from our laboratory. Finally, we shortly discuss how autopoiesis can be used as a theoretical framework for defining synthetic minimal life, minimal cognition, and as bridge between synthetic biology and artificial intelligence.Comment: In Proceedings Wivace 2013, arXiv:1309.712

    Simon-Ando decomposability and fitness landscapes

    Get PDF
    In this paper, we investigate fitness landscapes (under point mutation and recombination) from the standpoint of whether the induced evolutionary dynamics have a “fast-slow” time scale associated with the differences in relaxation time between local quasi-equilibria and the global equilibrium. This dynamical hevavior has been formally described in the econometrics literature in terms of the spectral properties of the appropriate operator matrices by Simon and Ando (Econometrica 29 (1961) 111), and we use the relations they derive to ask which fitness functions and mutation/recombination operators satisfy these properties. It turns out that quite a wide range of landscapes satisfy the condition (at least trivially) under point mutation given a sufficiently low mutation rate, while the property appears to be difficult to satisfy under genetic recombination. In spite of the fact that Simon-Ando decomposability can be realized over fairly wide range of parameters, it imposes a number of restriction on which landscape partitionings are possible. For these reasons, the Simon-Ando formalism does not appear to be applicable to other forms of decomposition and aggregation of variables that are important in evolutionary systems

    Bibliometric Perspectives on Medical Innovation using the Medical Subject Headings (MeSH) of PubMed

    Full text link
    Multiple perspectives on the nonlinear processes of medical innovations can be distinguished and combined using the Medical Subject Headings (MeSH) of the Medline database. Focusing on three main branches-"diseases," "drugs and chemicals," and "techniques and equipment"-we use base maps and overlay techniques to investigate the translations and interactions and thus to gain a bibliometric perspective on the dynamics of medical innovations. To this end, we first analyze the Medline database, the MeSH index tree, and the various options for a static mapping from different perspectives and at different levels of aggregation. Following a specific innovation (RNA interference) over time, the notion of a trajectory which leaves a signature in the database is elaborated. Can the detailed index terms describing the dynamics of research be used to predict the diffusion dynamics of research results? Possibilities are specified for further integration between the Medline database, on the one hand, and the Science Citation Index and Scopus (containing citation information), on the other.Comment: forthcoming in the Journal of the American Society for Information Science and Technolog
    • …
    corecore