37 research outputs found

    Autonomous Recovery Of Reconfigurable Logic Devices Using Priority Escalation Of Slack

    Get PDF
    Field Programmable Gate Array (FPGA) devices offer a suitable platform for survivable hardware architectures in mission-critical systems. In this dissertation, active dynamic redundancy-based fault-handling techniques are proposed which exploit the dynamic partial reconfiguration capability of SRAM-based FPGAs. Self-adaptation is realized by employing reconfiguration in detection, diagnosis, and recovery phases. To extend these concepts to semiconductor aging and process variation in the deep submicron era, resilient adaptable processing systems are sought to maintain quality and throughput requirements despite the vulnerabilities of the underlying computational devices. A new approach to autonomous fault-handling which addresses these goals is developed using only a uniplex hardware arrangement. It operates by observing a health metric to achieve Fault Demotion using Recon- figurable Slack (FaDReS). Here an autonomous fault isolation scheme is employed which neither requires test vectors nor suspends the computational throughput, but instead observes the value of a health metric based on runtime input. The deterministic flow of the fault isolation scheme guarantees success in a bounded number of reconfigurations of the FPGA fabric. FaDReS is then extended to the Priority Using Resource Escalation (PURE) online redundancy scheme which considers fault-isolation latency and throughput trade-offs under a dynamic spare arrangement. While deep-submicron designs introduce new challenges, use of adaptive techniques are seen to provide several promising avenues for improving resilience. The scheme developed is demonstrated by hardware design of various signal processing circuits and their implementation on a Xilinx Virtex-4 FPGA device. These include a Discrete Cosine Transform (DCT) core, Motion Estimation (ME) engine, Finite Impulse Response (FIR) Filter, Support Vector Machine (SVM), and Advanced Encryption Standard (AES) blocks in addition to MCNC benchmark circuits. A iii significant reduction in power consumption is achieved ranging from 83% for low motion-activity scenes to 12.5% for high motion activity video scenes in a novel ME engine configuration. For a typical benchmark video sequence, PURE is shown to maintain a PSNR baseline near 32dB. The diagnosability, reconfiguration latency, and resource overhead of each approach is analyzed. Compared to previous alternatives, PURE maintains a PSNR within a difference of 4.02dB to 6.67dB from the fault-free baseline by escalating healthy resources to higher-priority signal processing functions. The results indicate the benefits of priority-aware resiliency over conventional redundancy approaches in terms of fault-recovery, power consumption, and resource-area requirements. Together, these provide a broad range of strategies to achieve autonomous recovery of reconfigurable logic devices under a variety of constraints, operating conditions, and optimization criteria

    A Novel Sequence Generation Approach to Diagnose Faults in Reconfigurable Scan Networks

    Get PDF
    With the complexity of nanoelectronic devices rapidly increasing, an efficient way to handle large number of embedded instruments became a necessity. The IEEE 1687 standard was introduced to provide flexibility in accessing and controlling such instrumentation through a reconfigurable scan chain. Nowadays, together with testing the system for defects that may affect the scan chains themselves, the diagnosis of such faults is also important. This article proposes a method for generating stimuli to precisely identify permanent high-level faults in a IEEE 1687 reconfigurable scan chain: the system is modeled as a finite state automaton where faults correspond to multiple incorrect transitions; then, a dynamic greedy algorithm is used to select a sequence of inputs able to distinguish between all possible faults. Experimental results on the widely-adopted ITC'02 and ITC'16 benchmark suites, as well as on synthetically generated circuits, clearly demonstrate the applicability and effectiveness of the proposed approach: generated sequences are two orders of magnitude shorter compared to previous methodologies, while the computational resources required remain acceptable even for larger benchmarks

    Riverscape properties contribute to the origin and structure of a hybrid zone in a Neotropical freshwater fish

    Full text link
    Understanding the structure of hybrid zones provides valuable insights about species boundaries and speciation, such as the evolution of barriers to gene flow and the strength of selection. In river networks, studying evolutionary processes in hybrid zones can be especially challenging, given the influence of past and current river properties along with biological species- specific traits. Here, we suggest that a natural hybrid zone between two divergent lineages of the sexually dimorphic Neotropical fish Nematocharax venustus was probably established by secondary contact as a result of a river capture event between the Contas and Pardo river basins. This putative river capture is supported by hydrogeological evidence of elbows of capture, wind gaps and geological faults. The morphological (colour pattern) and genetic (mtDNA and RADseq) variation reveal a clinal transition between parental lineages along the main river, with predominance of F2 hybrids at the centre of the hybrid zone, absence of early generation backcrosses and different levels of hybridization in the tributaries. We highlight that different sources of information are crucial for understanding how the riverscape spatial history influences the connectivity between and within river systems and, consequently, the dynamics of gene flow between freshwater lineages/species.River networks are spatially and temporally dynamic environments that impose challenges to the study of hybrid zones. Here, we elucidate the morphological and genetic structure of a hybrid zone generated by secondary contact between lineages of a Neotropical fish genus and discuss the possible role of past and current river properties (including river captures) in its origin and structure.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163541/3/jeb13689_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163541/2/jeb13689-sup-0001-AppendixS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163541/1/jeb13689.pd

    Distributed Self Fault Diagnosis in Wireless Sensor Networks using Statistical Methods

    Get PDF
    Wireless sensor networks (WSNs) are widely used in various real life applications where the sensor nodes are randomly deployed in hostile, human inaccessible and adversarial environments. One major research focus in wireless sensor networks in the past decades has been to diagnose the sensor nodes to identify their fault status. This helps to provide continuous service of the network despite the occurrence of failure due to environmental conditions. Some of the burning issues related to fault diagnosis in wireless sensor networks have been addressed in this thesis mainly focusing on improvement of diagnostic accuracy, reduction of communication overhead and latency, and robustness to erroneous data by using statistical methods. All the proposed algorithms are evaluated analytically and implemented in standard network simulator NS3 (version 3.19). A distributed self fault diagnosis algorithm using neighbor coordination (DSFDNC) is proposed to identify both hard and soft faulty sensor nodes in wireless sensor networks. The algorithm is distributed (runs in each sensor node), self diagnosable (each node identifies its fault status) and can diagnose the most common faults like stuck at zero, stuck at one, random data and hard faults. In this algorithm, each sensor node gathered the observed data from the neighbors and computes the mean to check the presence of faulty sensor node. If a node diagnoses a faulty sensor node in the neighbors, then it compares observed data with the data of the neighbors and predicts its probable fault status. The final fault status is determined by diffusing the fault information obtained from the neighbors. The accuracy and completeness of the algorithm are verified based on the statistical analysis over sensors data. The performance parameters such as diagnosis accuracy, false alarm rate, false positive rate, total number of message exchanges, energy consumption, network life time, and diagnosis latency of the DSFDNC algorithm are determined for different fault probabilities and average degrees and compared with existing distributed fault diagnosis algorithms. To enhance the diagnosis accuracy, another self fault diagnosis algorithm is proposed based on hypothesis testing (DSFDHT) using the neighbor coordination approach. The Newman-Pearson hypothesis test is used to diagnose the soft fault status of each sensor node along with the neighbors. The algorithm can diagnose the faulty sensor node when the average degree of the network is less. The diagnosis accuracy, false alarm rate and false positive rate performance of the DSFDHT algorithm are improved over DSFDNC for sparse wireless sensor networks by keeping other performance parameters nearly same. The classical methods for fault finding using mean, median, majority voting and hypothesis testing are not suitable for large scale wireless sensor networks due to large devi- ation in transmitted data by faulty sensor nodes. Therefore, a modified three sigma edit test based self fault diagnosis algorithm (DSFD3SET) is proposed which diagnoses in an efficient manner over a large scale wireless sensor networks. The diagnosis accuracy, false alarm rate, and false positive rate of the proposed algorithm improve as compared to that of the DSFDNC and DSFDHT algorithms. The algorithm enhances the total number of message exchanges, energy consumption, network life time, and diagnosis latency, because the proposed algorithm needs less number of message exchanges over the algorithms such as DSFDNC and DSFDHT. In the DSFDNC, DSFDHT and DSFD3SET algorithms, the faulty sensor nodes are considered as soft faulty nodes which behave permanently. However in wireless sensor networks, the sensor nodes behave either fault free or faulty during different periods of time and are considered as intermittent faulty sensor nodes. Diagnosing intermittent faulty sensor nodes in wireless sensor networks is a challenging problem, because of inconsistent result patterns generated by the sensor nodes. The traditional distributed fault diagnosis (DIFD) algorithms consume more message exchanges to obtain the global fault status of the network. To optimize the number of message exchanges over the network, a self fault diagnosis algorithm is proposed here, which repeatedly conducts the self fault diagnosis procedure based on the modified three sigma edit test over a duration to identify the intermittent faulty sensor nodes. The algorithm needs less number of iterations to identify the intermittent faulty sensor nodes. The simulation results show that, the performance of the HISFD3SET algorithm improves in diagnosis accuracy, false alarm rate and false positive rate over the DIFD algorith

    Estratégias eficientes para identificação de falhas utilizando o diagnóstico baseado em comparações

    Get PDF
    Orientador: Prof. Dr. Elias Procópio Duarte Jr.Tese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Curso de Pós-Graduaçao em Informática. Defesa: Curitiba, 12/04/2013Bibliografia: fls. 126-148Resumo: O diagnóstico baseado em comparações e uma forma realista para detectar falhas em hardware, software, redes e sistemas distribuídos. O diagnostico se baseia na comparaçao de resultados de tarefas produzidos por pares de unidades para determinar quais sao as unidades falhas e sem-falha do sistema. Qualquer diferenca no resultado da comparacao indica que uma ou ambas as unidades estao falhas. O diagnostico completo do sistema e baseado no resultado de todas as comparações. Este trabalho apresenta um novo algoritmo de diagnostico para identificar falhas em sistemas de topologia arbitraria com base no modelo MM*. A complexidade do algoritmo proposto e O(t2AN) no pior caso para sistemas de N unidades, onde t denota o numero maximo permitido de unidades falhas e A e o grau da unidade de maior grau no sistema. Esta complexidade e significativamente menor que a dos outros algoritmos previamente publicados. Alem da especificacao do algoritmo e das provas de correcão, resultados obtidos atraves da execucao exaustiva de experimentos sao apresentados, mostrando o desempenho me dio do algoritmo para diferentes sistemas. Al em do novo algoritmo para sistemas de topologia arbitraria, este trabalho tambem apresenta duas outras solucoes para deteccão e combate a poluicao de conteudo, ou alteracoes nao autorizadas, em transmissões de mídia contínua ao vivo em redes P2P - a primeira e uma solucão centralizada e que realiza o diagnostico da poluicao na rede, e a segunda e uma solucao completamente distribuída e descentralizada que tem o objetivo de combater a propagacao da poluicao na rede. Ambas as solucoes utilizam o diagnostico baseado em comparacoes para detectar alterações no conteudo dos dados transmitidos. As soluções foram implementadas no Fireflies, um protocolo escalavel para redes overlay, e diversos experimentos atraves de simulacao foram conduzidos. Os resultados mostram que ambas as estrategias sao solucães viaveis para identificar e combater a poluiçcãao de conteudo em transmissãoes ao vivo e que adicionam baixa sobrecarga ao trafego da rede. Em particular a estrategia de combate a poluicao foi capaz de reduzir consideravelmente a poluicão de conteudo em diversas configurações, em varios casos chegando a elimina-la no decorrer das transmissoães.Abstract: Comparison-based diagnosis is a practical approach to detect faults in hardware, software, and network-based systems. Diagnosis is based on the comparison of task outputs returned by pairs of system units in order to determine whether those units are faulty or fault-free. If the comparison results in a mismatch then one ore both units are faulty. System diagnosis is based on the complete set of all comparison results. This work introduces a novel diagnosis algorithm to identify faults in t-diagnosable systems of arbitrary topology under the MM* model. The complexity of the proposed algorithm is O(t2AN) in the worst case for systems with N units, where t denotes the maximum number of faulty units allowed and A corresponds to the maximum degree of a unit in the system. This complexity is significantly lower than those of previously published algorithms. Besides the algorithm specification and correctness proofs, exhaustive simulations results are presented, showing the typical performance of the algorithm for different systems. Moreover, this work also presents two different strategies to detect and fight content pollution in P2P live streaming transmissions - the first strategy is centralized and performs the diagnosis of content pollution in the network, and the second strategy is a completely distributed solution to combat the propagation of the pollution. Both strategies employ comparison-based diagnosis in order to detect any modification in the data transmitted. The solutions were also implemented in Fireflies, a scalable and fault-tolerant overlay network protocol, and a large number of simulation experiments were conduced. Results show that both strategies are feasible solutions to identify and fight content pollution in live streaming sessions and that they add low overhead in terms of network bandwidth usage. In particular, the solution proposed to combat content pollution was able to significantly reduce the pollution over the system in diverse network configurations - in many cases the solution nearly eliminated the pollution during the transmission
    corecore