362 research outputs found

    A Descriptive Model of Robot Team and the Dynamic Evolution of Robot Team Cooperation

    Full text link
    At present, the research on robot team cooperation is still in qualitative analysis phase and lacks the description model that can quantitatively describe the dynamical evolution of team cooperative relationships with constantly changeable task demand in Multi-robot field. First this paper whole and static describes organization model HWROM of robot team, then uses Markov course and Bayesian theorem for reference, dynamical describes the team cooperative relationships building. Finally from cooperative entity layer, ability layer and relative layer we research team formation and cooperative mechanism, and discuss how to optimize relative action sets during the evolution. The dynamic evolution model of robot team and cooperative relationships between robot teams proposed and described in this paper can not only generalize the robot team as a whole, but also depict the dynamic evolving process quantitatively. Users can also make the prediction of the cooperative relationship and the action of the robot team encountering new demands based on this model. Journal web page & a lot of robotic related papers www.ars-journal.co

    АгрСсивноС ΠΈ ΠΌΠΈΡ€Π½ΠΎΠ΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΠΌΠ½ΠΎΠ³ΠΎΠ°Π³Π΅Π½Ρ‚Π½Ρ‹Ρ… систСмах Π² ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ срСдС

    Get PDF
    Π’ Π°Π³Π΅Π½Ρ‚Π½ΠΎ-ΠΎΡ€Ρ–Ρ”Π½Ρ‚ΠΎΠ²Π°Π½ΠΎΠΌΡƒ ΠΏΡ–Π΄Ρ…ΠΎΠ΄Ρ– Π²ΠΈΠ΄Ρ–Π»Π΅Π½ΠΎ ΠΊΠΎΠ½ΡΠΎΠ»Ρ–Π΄Π°Ρ†Ρ–ΡŽ Π²Π΅Π»ΠΈΠΊΠΎΡ— різноманітності ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ. Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½Ρ– ΠΌΠΎΠ΄Π΅Π»Ρ– Π±Π°Π³Π°Ρ‚ΡŒΠΎΡ… дослідників Ρ” ΠΎΠ΄Π½ΠΎΡ‚ΠΈΠΏΠ½ΠΈΠΌΠΈ Π·Π° основними ΠΎΠ·Π½Π°ΠΊΠ°ΠΌΠΈ, ΠΏΡ€ΠΎΡ‚Π΅ Ρƒ сфСрі складних Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΈΡ… систСм Ρ‚Π°ΠΊΠΈΡ…, як ΡˆΡ‚ΡƒΡ‡Π½Ρ– Π΅ΠΊΠΎΠ»ΠΎΠ³Ρ–Ρ— Π½Π΅Π·Π½Π°Ρ‡Π½Π° Π²Ρ–Π΄ΠΌΡ–Π½Π½Ρ–ΡΡ‚ΡŒ Π² Π°Ρ€Ρ…Ρ–Ρ‚Π΅ΠΊΡ‚ΡƒΡ€Ρ– Ρ‡ΠΈ різниця Π·Π½Π°Ρ‡Π΅Π½ΡŒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π²Ρ–Π΄Ρ‡ΡƒΡ‚Π½ΠΎ Π²ΠΏΠ»ΠΈΠ²Π°Ρ‚ΠΈ Π½Π° Π΅ΠΌΠ΅Ρ€Π΄ΠΆΠ΅Π½Ρ‚Π½Ρ– характСристики ΠΌΠΎΠ΄Π΅Π»Ρ–. ΠŸΠ΅Ρ€ΡˆΠΎΠ²Ρ–Π΄ΠΊΡ€ΠΈΠ²Π°Ρ‡Π°ΠΌΠΈ Π°Π³Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ ΠΏΡ–Π΄Ρ…ΠΎΠ΄Ρƒ Π΄ΠΎ ΡˆΡ‚ΡƒΡ‡Π½ΠΈΡ… СкосистСм Π ΠΎΠ±Π΅Ρ€Ρ‚ΠΎΠΌ АкстСлом Ρ– Π ΠΎΠ±Π΅Ρ€Ρ‚ΠΎΠΌ ΠΠΊΡΠ΅Π»ΡŒΡ€ΠΎΠ΄ΠΎΠΌ Π·Π°Π·Π½Π°Ρ‡Π΅Π½ΠΎ, Ρ‰ΠΎ наявна ΠΌΠ½ΠΎΠΆΠΈΠ½Π° Π±Π°Π³Π°Ρ‚ΠΎΠ°Π³Π΅Π½Ρ‚Π½ΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΏΠΎΡ‚Ρ€Π΅Π±ΡƒΡ” впровадТСння Ρ‚Π΅Ρ…Π½Ρ–ΠΊ Ρ‚Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ, Ρ‰ΠΎ Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡ‚ΡŒ ΡƒΠ·Π°Π³Π°Π»ΡŒΠ½ΠΈΡ‚ΠΈ Ρ—Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. Подано модСль, Ρ‰ΠΎ Ρ” Ρ€Π΅ΠΏΠ»Ρ–ΠΊΠ°Ρ†Ρ–Ρ”ΡŽ ΡƒΠΆΠ΅ Ρ–ΡΠ½ΡƒΡŽΡ‡ΠΎΡ— Ρ– ΠΏΠΎΠ΄Ρ–Π±Π½ΠΎΡ— Π΄ΠΎ класичних ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΡˆΡ‚ΡƒΡ‡Π½ΠΎΠ³ΠΎ Тиття Ρƒ ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π½ΠΎΠΌΡƒ просторі. ДослідТСно Π·Π°Π»Π΅ΠΆΠ½Ρ–ΡΡ‚ΡŒ агрСсивної Ρ‚Π° ΠΌΠΈΡ€Π½ΠΎΡ— ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΠΈ Π²Ρ–Π΄ ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– рСсурсу, Ρ‰ΠΎ Π½Π°Π΄Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ систСми. ΠŸΠΎΡ€Ρ–Π²Π½ΡΠ½ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ ΠΏΠΎΡ‚ΠΎΡ‡Π½ΠΎΡ— ΠΌΠΎΠ΄Π΅Π»Ρ–-Ρ€Π΅ΠΏΠ»Ρ–ΠΊΠ°Ρ†Ρ–Ρ— Ρ‚Π° Ρ—Ρ— ΠΏΡ€ΠΎΡ‚ΠΎΡ‚ΠΈΠΏΡƒ, Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ АкстСлом Ρ‚Π° ΠΠΊΡΠ΅Π»ΡŒΡ€ΠΎΠ΄ΠΎΠΌ Ρƒ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ– "стикування ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ".One of the key issues in Multi-Agent simulation approach is a consolidation of great model variety. Many researches govern own unique models that are similar in basic principles but for complex adaptive systems such as Artificial Ecosystems slight difference in architecture and parameters calibration could affect crucially on the emergent properties of the model. As it was denoted by the pioneers of the Artificial Ecosystems modelling Robert Axtell and Robert Axelrod: variety of Multi-Agent models need introduction of methods and technics that allows consolidating of its results. In work we present modification of model similar to classic Artificial Life spatial lattice models and trace the exhibition of aggressive and peaceful behavior depending on the income resource. We consider results of both models’ simulation as it was proposed in "docking models" method by Axtell and Axelrod.Π’ Π°Π³Π΅Π½Ρ‚Π½ΠΎ-ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π΅ Π²Ρ‹Π΄Π΅Π»Π΅Π½Π° консолидация большого разнообразия ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΌΠ½ΠΎΠ³ΠΈΡ… исслСдоватСлСй ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΠ΄Π½ΠΎΡ‚ΠΈΠΏΠ½Ρ‹ΠΌΠΈ ΠΏΠΎ основным ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ, ΠΎΠ΄Π½Π°ΠΊΠΎ Π² сфСрС слоТных Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½Ρ‹Ρ… систСм Ρ‚Π°ΠΊΠΈΡ…, ΠΊΠ°ΠΊ искусствСнныС экологии Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ Π² Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Π΅ ΠΈΠ»ΠΈ Ρ€Π°Π·Π½ΠΈΡ†Π° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ достаточно большоС влияниС Π½Π° эмСрдТСнтныС характСристики ΠΌΠΎΠ΄Π΅Π»ΠΈ. ΠŸΠ΅Ρ€Π²ΠΎΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°Ρ‚Π΅Π»ΡΠΌΠΈ Π°Π³Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° Π² искусствСнных экосистСмах Π ΠΎΠ±Π΅Ρ€Ρ‚ΠΎΠΌ АкстСлом ΠΈ Π ΠΎΠ±Π΅Ρ€Ρ‚ΠΎΠΌ ΠΠΊΡΠ΅Π»ΡŒΡ€ΠΎΠ΄ΠΎΠΌ ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΈΠΌΠ΅ΡŽΡ‰Π΅Π΅ΡΡ мноТСство ΠΌΠ½ΠΎΠ³ΠΎΠ°Π³Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ внСдрСния Ρ‚Π΅Ρ…Π½ΠΈΠΊ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ позволят ΠΎΠ±ΠΎΠ±Ρ‰ΠΈΡ‚ΡŒ ΠΈΡ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π° модСль, которая являСтся Ρ€Π΅ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠ΅ΠΉ ΡƒΠΆΠ΅ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Π° классичСским модСлям искусствСнной ΠΆΠΈΠ·Π½ΠΈ Π² ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΌ пространствС. ИсслСдована Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ агрСссивного ΠΈ ΠΌΠΈΡ€Π½ΠΎΠ³ΠΎ повСдСния Π² зависимости ΠΎΡ‚ количСства рСсурса, ΠΏΠΎΡΡ‚ΡƒΠΏΠ°ΡŽΡ‰Π΅Π³ΠΎ Π² систСму. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ сравнСниС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ-Ρ€Π΅ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΈ Π΅Π΅ ΠΏΡ€ΠΎΡ‚ΠΎΡ‚ΠΈΠΏΠ°, ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎΠ³ΠΎ АкстСлом ΠΈ ΠΠΊΡΠ΅Π»ΡŒΡ€ΠΎΠ΄ΠΎΠΌ Π² ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ "стыковка ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ"

    Π”ΠΈΠ½Π°ΠΌΠΈΠΊΠ° Π³Π΅Π½ΠΎΡ‚ΠΈΠΏΠ° Π² Π½Π΅ΠΉΡ€ΠΎΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΈ Π°Π³Π΅Π½Ρ‚ΠΎΠ² Π² модСлях искусствСнной ΠΆΠΈΠ·Π½ΠΈ

    Get PDF
    ΠšΠΎΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½Π° ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΠ° Ρ” ΠΎΠ΄Π½Ρ–Ρ”ΡŽ Π· Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆ часто використовуваних Ρ‚Π° ΠΏΠΎΡˆΠΈΡ€Π΅Π½ΠΈΡ… рис для Π±Π°Π³Π°Ρ‚ΠΎΠ°Π³Π΅Π½Ρ‚Π½ΠΈΡ… систСм. Π£ дСяких Π²ΠΈΠΏΠ°Π΄ΠΊΠ°Ρ… поява Ρ‚Π°ΠΊΠΎΡ— ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΠΈ пов’язана Ρ–Π· ΠΏΠΎΠ΄Ρ–Π»ΠΎΠΌ насСлСння Π½Π° ΡΠΏΡ–Π²Ρ–ΡΠ½ΡƒΡŽΡ‡Ρ– субпопуляції [1, 2]. Π“Ρ€ΡƒΠΏΠΎΠ²Π° взаємодія ΠΌΠΎΠΆΠ΅ Π½Π°Π±ΡƒΠ²Π°Ρ‚ΠΈ Π½Π΅ лишС Ρ„ΠΎΡ€ΠΌΠΈ антагоністичного ΠΊΠΎΠ½Ρ„Π»Ρ–ΠΊΡ‚Ρƒ, Π°Π»Π΅ ΠΉ Π·ΡƒΠΌΠΎΠ²Π»ΡŽΠ²Π°Ρ‚ΠΈΡΡ Π³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π½ΠΈΠΌ Π΄Ρ€Π΅ΠΉΡ„ΠΎΠΌ, який ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ ΠΊΠΎΠ½ΠΊΡƒΡ€Π΅Π½Ρ†Ρ–Ρ— ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΠΎΠ²ΠΈΡ… стратСгій Ρ‚Π° ΠΌΠΎΠΆΠ»ΠΈΠ²ΠΎΡ— асиміляції [3]. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΎΠ²Π°Π½ΠΎ Ρ€Ρ–Π·Π½Ρ– Π²ΠΈΠ΄ΠΈ залСТностСй ΠΌΡ–ΠΆ Π³Ρ€ΡƒΠΏΠ°ΠΌΠΈ Π°Π³Π΅Π½Ρ‚Ρ–Π² Ρ‚Π° Ρ—Ρ… ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΠΎΠ²ΠΈΠΌΠΈ стратСгіями. Використано ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³Ρ–ΡŽ спостСрСТСння Π·Π° Π΄ΠΈΠ½Π°ΠΌΡ–ΠΊΠΎΡŽ Π°Π³Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π³Π΅Π½ΠΎΡ‚ΠΈΠΏΡƒ [2], Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ Π΄ΠΎ якої популяція Ρƒ просторі Π³Π΅Π½ΠΎΡ‚ΠΈΠΏΡ–Π² ΠΌΠΎΠΆΠ΅ ΠΌΠ°Ρ‚ΠΈ вигляд Ρ…ΠΌΠ°Ρ€ΠΈ Ρ‚ΠΎΡ‡ΠΎΠΊ, ΠΊΠΎΠΆΠ½Π° Ρ‚ΠΎΡ‡ΠΊΠ° якої Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π°Ρ” ΠΎΠ΄Π½Ρ–ΠΉ особині. Розглянуто Π΄ΠΈΠ½Π°ΠΌΡ–ΠΊΡƒ Ρ†Π΅Π½Ρ‚Ρ€ΠΎΡ—Π΄Π° насСлСння β€” Ρ†Π΅Π½Ρ‚Ρ€Π° Ρ…ΠΌΠ°Ρ€ΠΈ Π³Π΅Π½ΠΎΡ‚ΠΈΠΏΡƒ. Аналіз Ρ‚Π°ΠΊΠΈΡ… Ρ‚Ρ€Π°Ρ”ΠΊΡ‚ΠΎΡ€Ρ–ΠΉ ΠΌΠΎΠΆΠ΅ сприяти Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½Π½ΡŽ Ρ€Ρ–Π·Π½ΠΈΡ… Ρ€Π΅ΠΆΠΈΠΌΡ–Π² існування популяції Ρ‚Π° Ρ—Ρ… зародТСння.Cooperation behavior is one of the most used and spread Multi-agent system feature. In some cases emergence of this behaviour can be characterized by division of population on co-evolving subpopulations [1], [2]. Group interaction can take not only antagonistic conflict form but also genetic drift that results with strategies competition and assimilation [3]. In this work we demonstrate different relation between agent grouping and they behavior strategies. We use approach proposed in work [2] methodology of agent genotype dynamic tracking, due to this approach the evolving population can be presented in genotype space as a cloud of points where each point corresponds to one individual. In current work consider the movement of population centroid – the center of the genotype cloud. Analysis of such trajectories can shad the light on the regimes of population existence and genesis.ΠšΠΎΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ являСтся ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… ΠΈ распространСнных Ρ‡Π΅Ρ€Ρ‚ для ΠΌΠ½ΠΎΠ³ΠΎΠ°Π³Π΅Π½Ρ‚Π½Ρ‹Ρ… систСм. Π’ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… случаях появлСниС Ρ‚Π°ΠΊΠΎΠ³ΠΎ повСдСния связано с Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ насСлСния Π½Π° ΡΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ субпопуляции [1, 2]. Π“Ρ€ΡƒΠΏΠΏΠΎΠ²ΠΎΠ΅ взаимодСйствиС ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ„ΠΎΡ€ΠΌΡƒ антагонистичСского ΠΊΠΎΠ½Ρ„Π»ΠΈΠΊΡ‚Π°, Π½ΠΎ ΠΈ обуслoΠ²Π»ΠΈΠ²Π°Ρ‚ΡŒΡΡ гСнСтичСским Π΄Ρ€Π΅ΠΉΡ„ΠΎΠΌ, приводящим ΠΊ ΠΊΠΎΠ½ΠΊΡƒΡ€Π΅Π½Ρ†ΠΈΠΈ повСдСнчСских стратСгий ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠΉ ассимиляции [3]. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π²ΠΈΠ΄Ρ‹ зависимостСй ΠΌΠ΅ΠΆΠ΄Ρƒ Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ Π°Π³Π΅Π½Ρ‚ΠΎΠ² ΠΈ ΠΈΡ… повСдСнчСскими стратСгиями. Использована мСтодология наблюдСния Π·Π° Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΎΠΉ Π°Π³Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π³Π΅Π½ΠΎΡ‚ΠΈΠΏΠ° [2], согласно ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ популяция ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСна Π² пространствС Π³Π΅Π½ΠΎΡ‚ΠΈΠΏΠΎΠ² Π² Π²ΠΈΠ΄Π΅ ΠΎΠ±Π»Π°ΠΊΠ° Ρ‚ΠΎΡ‡Π΅ΠΊ, Π³Π΄Π΅ каТдая Ρ‚ΠΎΡ‡ΠΊΠ° соотвСтствуСт ΠΎΠ΄Π½ΠΎΠΉ особи. РассмотрСна Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΈΠ΄Π° популяции β€” Ρ†Π΅Π½Ρ‚Ρ€ ΠΎΠ±Π»Π°ΠΊΠ° Π³Π΅Π½ΠΎΡ‚ΠΈΠΏΠ°. Анализ Ρ‚Π°ΠΊΠΈΡ… Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΉ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΠΌΠΎΡ‡ΡŒ исслСдованию Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² сущСствования популяции ΠΈ ΠΈΡ… зароТдСния

    Competition and collaboration in cooperative coevolution of Elman recurrent neural networks for time - series prediction

    Get PDF
    Collaboration enables weak species to survive in an environment where different species compete for limited resources. Cooperative coevolution (CC) is a nature-inspired optimization method that divides a problem into subcomponents and evolves them while genetically isolating them. Problem decomposition is an important aspect in using CC for neuroevolution. CC employs different problem decomposition methods to decompose the neural network training problem into subcomponents. Different problem decomposition methods have features that are helpful at different stages in the evolutionary process. Adaptation, collaboration, and competition are needed for CC, as multiple subpopulations are used to represent the problem. It is important to add collaboration and competition in CC. This paper presents a competitive CC method for training recurrent neural networks for chaotic time-series prediction. Two different instances of the competitive method are proposed that employs different problem decomposition methods to enforce island-based competition. The results show improvement in the performance of the proposed methods in most cases when compared with standalone CC and other methods from the literature

    A novel strategy for power sources management in connected plug-in hybrid electric vehicles based on mobile edge computation framework

    Get PDF
    This paper proposes a novel control framework and the corresponding strategy for power sources management in connected plug-in hybrid electric vehicles (cPHEVs). A mobile edge computation (MEC) based control framework is developed first, evolving the conventional on-board vehicle control unit (VCU) into the hierarchically asynchronous controller that is partly located in cloud. Elaborately contrastive analysis on the performance of processing capacity, communication frequency and communication delay manifests dramatic potential of the proposed framework in sustaining development of the cooperative control strategy for cPHEVs. On the basis of MEC based control framework, a specific cooperative strategy is constructed. The novel strategy accomplishes energy flow management between different power sources with incorporation of the active energy consumption plan and adaptive energy consumption management. The method to generate the reference battery state-of-charge (SOC) trajectories in energy consumption plan stage is emphatically investigated, fast outputting reference trajectories that are tightly close to results by global optimization methods. The estimation of distribution algorithm (EDA) is employed to output reference control policies under the specific terminal conditions assigned via the machine learning based method. Finally, simulation results highlight that the novel strategy attains superior performance in real-time application that is close to the offline global optimization solutions

    Aggressive and peaceful behavior in multiagent systems on cellular space

    No full text
    One of the key issues in Multi-Agent simulation approach is a consolidation of great model variety. Many researches govern own unique models that are similar in basic principles but for complex adaptive systems such as Artificial Ecosystems slight difference in architecture and parameters calibration could affect crucially on the emergent properties of the model. As it was denoted by the pioneers of the Artificial Ecosystems modelling Robert Axtell and Robert Axelrod: variety of Multi-Agent models need introduction of methods and technics that allows consolidating of its results. In work we present modification of model similar to classic Artificial Life spatial lattice models and trace the exhibition of aggressive and peaceful behavior depending on the income resource. We consider results of both models’ simulation as it was proposed in Β«docking modelsΒ» method by Axtell and Axelrod.Π’ Π°Π³Π΅Π½Ρ‚Π½ΠΎ-ΠΎΡ€Ρ–Ρ”Π½Ρ‚ΠΎΠ²Π°Π½ΠΎΠΌΡƒ ΠΏΡ–Π΄Ρ…ΠΎΠ΄Ρ– Π²ΠΈΠ΄Ρ–Π»Π΅Π½ΠΎ ΠΊΠΎΠ½ΡΠΎΠ»Ρ–Π΄Π°Ρ†Ρ–ΡŽ Π²Π΅Π»ΠΈΠΊΠΎΡ— різноманітності ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ. Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½Ρ– ΠΌΠΎΠ΄Π΅Π»Ρ– Π±Π°Π³Π°Ρ‚ΡŒΠΎΡ… дослідників Ρ” ΠΎΠ΄Π½ΠΎΡ‚ΠΈΠΏΠ½ΠΈΠΌΠΈ Π·Π° основними ΠΎΠ·Π½Π°ΠΊΠ°ΠΌΠΈ, ΠΏΡ€ΠΎΡ‚Π΅ Ρƒ сфСрі складних Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΈΡ… систСм Ρ‚Π°ΠΊΠΈΡ…, як ΡˆΡ‚ΡƒΡ‡Π½Ρ– Π΅ΠΊΠΎΠ»ΠΎΠ³Ρ–Ρ— Π½Π΅Π·Π½Π°Ρ‡Π½Π° Π²Ρ–Π΄ΠΌΡ–Π½Π½Ρ–ΡΡ‚ΡŒ Π² Π°Ρ€Ρ…Ρ–Ρ‚Π΅ΠΊΡ‚ΡƒΡ€Ρ– Ρ‡ΠΈ різниця Π·Π½Π°Ρ‡Π΅Π½ΡŒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π²Ρ–Π΄Ρ‡ΡƒΡ‚Π½ΠΎ Π²ΠΏΠ»ΠΈΠ²Π°Ρ‚ΠΈ Π½Π° Π΅ΠΌΠ΅Ρ€Π΄ΠΆΠ΅Π½Ρ‚Π½Ρ– характСристики ΠΌΠΎΠ΄Π΅Π»Ρ–. ΠŸΠ΅Ρ€ΡˆΠΎΠ²Ρ–Π΄ΠΊΡ€ΠΈΠ²Π°Ρ‡Π°ΠΌΠΈ Π°Π³Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ ΠΏΡ–Π΄Ρ…ΠΎΠ΄Ρƒ Π΄ΠΎ ΡˆΡ‚ΡƒΡ‡Π½ΠΈΡ… СкосистСм Π ΠΎΠ±Π΅Ρ€Ρ‚ΠΎΠΌ АкстСлом Ρ– Π ΠΎΠ±Π΅Ρ€Ρ‚ΠΎΠΌ ΠΠΊΡΠ΅Π»ΡŒΡ€ΠΎΠ΄ΠΎΠΌ Π·Π°Π·Π½Π°Ρ‡Π΅Π½ΠΎ, Ρ‰ΠΎ наявна ΠΌΠ½ΠΎΠΆΠΈΠ½Π° Π±Π°Π³Π°Ρ‚ΠΎΠ°Π³Π΅Π½Ρ‚Π½ΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΏΠΎΡ‚Ρ€Π΅Π±ΡƒΡ” впровадТСння Ρ‚Π΅Ρ…Π½Ρ–ΠΊ Ρ‚Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ, Ρ‰ΠΎ Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡ‚ΡŒ ΡƒΠ·Π°Π³Π°Π»ΡŒΠ½ΠΈΡ‚ΠΈ Ρ—Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. Подано модСль, Ρ‰ΠΎ Ρ” Ρ€Π΅ΠΏΠ»Ρ–ΠΊΠ°Ρ†Ρ–Ρ”ΡŽ ΡƒΠΆΠ΅ Ρ–ΡΠ½ΡƒΡŽΡ‡ΠΎΡ— Ρ– ΠΏΠΎΠ΄Ρ–Π±Π½ΠΎΡ— Π΄ΠΎ класичних ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΡˆΡ‚ΡƒΡ‡Π½ΠΎΠ³ΠΎ Тиття Ρƒ ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π½ΠΎΠΌΡƒ просторі. ДослідТСно Π·Π°Π»Π΅ΠΆΠ½Ρ–ΡΡ‚ΡŒ агрСсивної Ρ‚Π° ΠΌΠΈΡ€Π½ΠΎΡ— ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΠΈ Π²Ρ–Π΄ ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– рСсурсу, Ρ‰ΠΎ Π½Π°Π΄Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ систСми. ΠŸΠΎΡ€Ρ–Π²Π½ΡΠ½ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ ΠΏΠΎΡ‚ΠΎΡ‡Π½ΠΎΡ— ΠΌΠΎΠ΄Π΅Π»Ρ–-Ρ€Π΅ΠΏΠ»Ρ–ΠΊΠ°Ρ†Ρ–Ρ— Ρ‚Π° Ρ—Ρ— ΠΏΡ€ΠΎΡ‚ΠΎΡ‚ΠΈΠΏΡƒ, Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ АкстСлом Ρ‚Π° ΠΠΊΡΠ΅Π»ΡŒΡ€ΠΎΠ΄ΠΎΠΌ Ρƒ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ– "стикування ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ".Π’ Π°Π³Π΅Π½Ρ‚Π½ΠΎ-ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π΅ Π²Ρ‹Π΄Π΅Π»Π΅Π½Π° консолидация большого разнообразия ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΌΠ½ΠΎΠ³ΠΈΡ… исслСдоватСлСй ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΠ΄Π½ΠΎΡ‚ΠΈΠΏΠ½Ρ‹ΠΌΠΈ ΠΏΠΎ основным ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ, ΠΎΠ΄Π½Π°ΠΊΠΎ Π² сфСрС слоТных Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½Ρ‹Ρ… систСм Ρ‚Π°ΠΊΠΈΡ…, ΠΊΠ°ΠΊ искусствСнныС экологии Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ Π² Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Π΅ ΠΈΠ»ΠΈ Ρ€Π°Π·Π½ΠΈΡ†Π° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ достаточно большоС влияниС Π½Π° эмСрдТСнтныС характСристики ΠΌΠΎΠ΄Π΅Π»ΠΈ. ΠŸΠ΅Ρ€Π²ΠΎΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°Ρ‚Π΅Π»ΡΠΌΠΈ Π°Π³Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° Π² искусствСнных экосистСмах Π ΠΎΠ±Π΅Ρ€Ρ‚ΠΎΠΌ АкстСлом ΠΈ Π ΠΎΠ±Π΅Ρ€Ρ‚ΠΎΠΌ ΠΠΊΡΠ΅Π»ΡŒΡ€ΠΎΠ΄ΠΎΠΌ ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΈΠΌΠ΅ΡŽΡ‰Π΅Π΅ΡΡ мноТСство ΠΌΠ½ΠΎΠ³ΠΎΠ°Π³Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ внСдрСния Ρ‚Π΅Ρ…Π½ΠΈΠΊ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ позволят ΠΎΠ±ΠΎΠ±Ρ‰ΠΈΡ‚ΡŒ ΠΈΡ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π° модСль, которая являСтся Ρ€Π΅ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠ΅ΠΉ ΡƒΠΆΠ΅ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Π° классичСским модСлям искусствСнной ΠΆΠΈΠ·Π½ΠΈ Π² ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΌ пространствС. ИсслСдована Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ агрСссивного ΠΈ ΠΌΠΈΡ€Π½ΠΎΠ³ΠΎ повСдСния Π² зависимости ΠΎΡ‚ количСства рСсурса, ΠΏΠΎΡΡ‚ΡƒΠΏΠ°ΡŽΡ‰Π΅Π³ΠΎ Π² систСму. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ сравнСниС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ-Ρ€Π΅ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΈ Π΅Π΅ ΠΏΡ€ΠΎΡ‚ΠΎΡ‚ΠΈΠΏΠ°, ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎΠ³ΠΎ АкстСлом ΠΈ ΠΠΊΡΠ΅Π»ΡŒΡ€ΠΎΠ΄ΠΎΠΌ Π² ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ «стыковка ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉΒ»

    Cross-Layer Optimization and Dynamic Spectrum Access for Distributed Wireless Networks

    Get PDF
    We proposed a novel spectrum allocation approach for distributed cognitive radio networks. Cognitive radio systems are capable of sensing the prevailing environmental conditions and automatically adapting its operating parameters in order to enhance system and network performance. Using this technology, our proposed approach optimizes each individual wireless device and its single-hop communication links using the partial operating parameter and environmental information from adjacent devices within the wireless network. Assuming stationary wireless nodes, all wireless communication links employ non-contiguous orthogonal frequency division multiplexing (NC-OFDM) in order to enable dynamic spectrum access (DSA). The proposed approach will attempt to simultaneously minimize the bit error rate, minimize out-of-band (OOB) interference, and maximize overall throughput using a multi-objective fitness function. Without loss in generality, genetic algorithms are employed to perform the actual optimization. Two generic optimization approaches, subcarrier-wise approach and block-wise approach, were proposed to access spectrum. We also proposed and analyzed several approaches implemented via genetic algorithms (GA), such as quantizing variables, using adaptive variable ranges, and Multi-Objective Genetic Algorithms, for increasing the speed and improving the results of combined spectrum utilization/cross-layer optimization approaches proposed, together with several assisting processes and modifications devised to make the optimization to improve efficiency and execution time
    • …
    corecore