819 research outputs found

    Condition Assessment Models for Sewer Pipelines

    Get PDF
    Underground pipeline system is a complex infrastructure system that has significant impact on social, environmental and economic aspects. Sewer pipeline networks are considered to be an extremely expensive asset. This study aims to develop condition assessment models for sewer pipeline networks. Seventeen factors affecting the condition of sewer network were considered for gravity pipelines in addition to the operating pressure for pressurized pipelines. Two different methodologies were adopted for models’ development. The first method by using an integrated Fuzzy Analytic Network Process (FANP) and Monte-Carlo simulation and the second method by using FANP, fuzzy set theory (FST) and Evidential Reasoning (ER). The models’ output is the assessed pipeline condition. In order to collect the necessary data for developing the models, questionnaires were distributed among experts in sewer pipelines in the state of Qatar. In addition, actual data for an existing sewage network in the state of Qatar was used to validate the models’ outputs. The “Ground Disturbance” factor was found to be the most influential factor followed by the “Location” factor with a weight of 10.6% and 9.3% for pipelines under gravity and 8.8% and 8.6% for pipelines under pressure, respectively. On the other hand, the least affecting factor was the “Length” followed by “Diameter” with weights of 2.2% and 2.5% for pipelines under gravity and 2.5% and 2.6% for pipelines under pressure. The developed models were able to satisfactorily assess the conditions of deteriorating sewer pipelines with an average validity of approximately 85% for the first approach and 86% for the second approach. The developed models are expected to be a useful tool for decision makers to properly plan for their inspections and provide effective rehabilitation of sewer networks.1)- NPRP grant # (NPRP6-357-2-150) from the QatarNational Research Fund (Member of Qatar Foundation) 2)-Tarek Zayed, Professor of Civil Engineeringat Concordia University for his support in the analysis part, the Public Works 3)-Authority of Qatar (ASHGAL) for their support in the data collection

    Prognostics in switching systems: Evidential markovian classification of real-time neuro-fuzzy predictions.

    No full text
    International audienceCondition-based maintenance is nowadays considered as a key-process in maintenance strategies and prognostics appears to be a very promising activity as it should permit to not engage inopportune spending. Various approaches have been developed and data-driven methods are increasingly applied. The training step of these methods generally requires huge datasets since a lot of methods rely on probability theory and/or on artificial neural networks. This step is thus time-consuming and generally made in batch mode which can be restrictive in practical application when few data are available. A method for prognostics is proposed to face up this problem of lack of information and missing prior knowledge. The approach is based on the integration of three complementary modules and aims at predicting the failure mode early while the system can switch between several functioning modes. The three modules are: 1) observation selection based on information theory and Choquet Integral, 2) prediction relying on an evolving real-time neuro-fuzzy system and 3) classification into one of the possible functioning modes using an evidential Markovian classifier based on Dempster-Shafer theory. Experiments concern the prediction of an engine health based on more than twenty observations

    A review of applications of fuzzy sets to safety and reliability engineering

    Get PDF
    Safety and reliability are rigorously assessed during the design of dependable systems. Probabilistic risk assessment (PRA) processes are comprehensive, structured and logical methods widely used for this purpose. PRA approaches include, but not limited to Fault Tree Analysis (FTA), Failure Mode and Effects Analysis (FMEA), and Event Tree Analysis (ETA). In conventional PRA, failure data about components is required for the purposes of quantitative analysis. In practice, it is not always possible to fully obtain this data due to unavailability of primary observations and consequent scarcity of statistical data about the failure of components. To handle such situations, fuzzy set theory has been successfully used in novel PRA approaches for safety and reliability evaluation under conditions of uncertainty. This paper presents a review of fuzzy set theory based methodologies applied to safety and reliability engineering, which include fuzzy FTA, fuzzy FMEA, fuzzy ETA, fuzzy Bayesian networks, fuzzy Markov chains, and fuzzy Petri nets. Firstly, we describe relevant fundamentals of fuzzy set theory and then we review applications of fuzzy set theory to system safety and reliability analysis. The review shows the context in which each technique may be more appropriate and highlights the overall potential usefulness of fuzzy set theory in addressing uncertainty in safety and reliability engineering

    An advanced risk analysis approach for container port safety evaluation

    Get PDF
    Risk analysis in seaports plays an increasingly important role in ensuring port operation reliability, maritime transportation safety and supply chain distribution resilience. However, the task is not straightforward given the challenges, including that port safety is affected by multiple factors related to design, installation, operation and maintenance and that traditional risk assessment methods such as quantitative risk analysis cannot sufficiently address uncertainty in failure data. This paper develops an advanced Failure Mode and Effects Analysis (FMEA) approach through incorporating Fuzzy Rule-Based Bayesian Networks (FRBN) to evaluate the criticality of the hazardous events (HEs) in a container terminal. The rational use of the Degrees of Belief (DoB) in a fuzzy rule base (FRB) facilitates the implementation of the new method in Container Terminal Risk Evaluation (CTRE) in practice. Compared to conventional FMEA methods, the new approach integrates FRB and BN in a complementary manner, in which the former provides a realistic and flexible way to describe input failure information while the latter allows easy updating of risk estimation results and facilitates real-time safety evaluation and dynamic risk-based decision support in container terminals. The proposed approach can also be tailored for wider application in other engineering and management systems, especially when instant risk ranking is required by the stakeholders to measure, predict and improve their system safety and reliability performance

    IMPORTANCE MEASURE OF PROBABILISTIC COMMON CAUSE FAILURES UNDER SYSTEM HYBRID UNCERTAINTY BASED ON BAYESIAN NETWORK

    Get PDF
    When dealing with modern complex systems, the relationship existing between components can lead to the appearance of various dependencies between component failures, where multiple items of the system fail simultaneously in unpredictable fashions. These probabilistic common cause failures affect greatly the performance of these critical systems. In this paper a novel methodology is developed to quantify the importance of common cause failures when hybrid uncertainties are presented in systems. First, the probabilistic common cause failures are modeled with Bayesian networks and are incorporated into the system exploiting the α factor model. Then, probability-boxes (bound analysis method) are introduced to model the hybrid uncertainties and quantify the effect of uncertainties on system reliability. Furthermore, an extended Birnbaum importance measure is defined to identify the critical common cause failure events and coupling impact factors when uncertainties are expressed by probability-boxes. Finally, the effectiveness of the method is demonstrated through a numerical example.W przypadku nowoczesnych systemów złożonych, relacje zachodzące między komponentami mogą prowadzić do pojawienia się różnych zależności między ich uszkodzeniami, a tym samym do sytuacji w których kilka składowych systemu ulega uszkodzeniu jednocześnie w nieprzewidywalny sposób. Tego typu probabilistyczne uszkodzenia wywołane wspólną przyczyną (PCCF) mają ogromny wpływ na wydajność tych kluczowych systemów. W przedstawionym artykule opracowano nową metodę szacowania ważności PCFF w sytuacjach, gdy w systemie występują niepewności hybrydowe. W pierwszej kolejności, PCFF zamodelowano za pomocą sieci bayesowskich i włączono do systemu wykorzystującego model współczynnika α. Następnie, wprowadzono przedziały prawdopodobieństwa, tzw. probability boxes (bound analysis method), w celu zamodelowania niepewności hybrydowych i kwantyfikacji wpływu tych niepewności na niezawodność systemu. Ponadto zdefiniowano rozszerzoną miarę ważności Birnbauma, która pozwala zidentyfikować krytyczne zdarzenia PCCF oraz czynniki, które je wywołały, w przypadkach, gdy niepewności wyrażone są za pomocą probability boxes. Skuteczność metody wykazano na przykładzie numerycznym

    LSTM-based Anomaly Detection for Non-linear Dynamical System

    Get PDF
    Anomaly detection for non-linear dynamical system plays an important role in ensuring the system stability. However, it is usually complex and has to be solved by large-scale simulation which requires extensive computing resources. In this paper, we propose a novel anomaly detection scheme in non-linear dynamical system based on Long Short-Term Memory (LSTM) to capture complex temporal changes of the time sequence and make multi-step predictions. Specifically, we first present the framework of LSTM-based anomaly detection in non-linear dynamical system, including data preprocessing, multi-step prediction and anomaly detection. According to the prediction requirement, two types of training modes are explored in multi-step prediction, where samples in a wall shear stress dataset are collected by an adaptive sliding window. On the basis of the multi-step prediction result, a Local Average with Adaptive Parameters (LAAP) algorithm is proposed to extract local numerical features of the time sequence and estimate the upcoming anomaly. The experimental results show that our proposed multi-step prediction method can achieve a higher prediction accuracy than traditional method in wall shear stress dataset, and the LAAP algorithm performs better than the absolute value-based method in anomaly detection task.Comment: 8 pages, 6 figure
    corecore