7,106 research outputs found

    A Case-Based Reasoning Method for Locating Evidence During Digital Forensic Device Triage

    Get PDF
    The role of triage in digital forensics is disputed, with some practitioners questioning its reliability for identifying evidential data. Although successfully implemented in the field of medicine, triage has not established itself to the same degree in digital forensics. This article presents a novel approach to triage for digital forensics. Case-Based Reasoning Forensic Triager (CBR-FT) is a method for collecting and reusing past digital forensic investigation information in order to highlight likely evidential areas on a suspect operating system, thereby helping an investigator to decide where to search for evidence. The CBR-FT framework is discussed and the results of twenty test triage examinations are presented. CBR-FT has been shown to be a more effective method of triage when compared to a practitioner using a leading commercial application

    A review of applications of fuzzy sets to safety and reliability engineering

    Get PDF
    Safety and reliability are rigorously assessed during the design of dependable systems. Probabilistic risk assessment (PRA) processes are comprehensive, structured and logical methods widely used for this purpose. PRA approaches include, but not limited to Fault Tree Analysis (FTA), Failure Mode and Effects Analysis (FMEA), and Event Tree Analysis (ETA). In conventional PRA, failure data about components is required for the purposes of quantitative analysis. In practice, it is not always possible to fully obtain this data due to unavailability of primary observations and consequent scarcity of statistical data about the failure of components. To handle such situations, fuzzy set theory has been successfully used in novel PRA approaches for safety and reliability evaluation under conditions of uncertainty. This paper presents a review of fuzzy set theory based methodologies applied to safety and reliability engineering, which include fuzzy FTA, fuzzy FMEA, fuzzy ETA, fuzzy Bayesian networks, fuzzy Markov chains, and fuzzy Petri nets. Firstly, we describe relevant fundamentals of fuzzy set theory and then we review applications of fuzzy set theory to system safety and reliability analysis. The review shows the context in which each technique may be more appropriate and highlights the overall potential usefulness of fuzzy set theory in addressing uncertainty in safety and reliability engineering

    An advanced risk analysis approach for container port safety evaluation

    Get PDF
    Risk analysis in seaports plays an increasingly important role in ensuring port operation reliability, maritime transportation safety and supply chain distribution resilience. However, the task is not straightforward given the challenges, including that port safety is affected by multiple factors related to design, installation, operation and maintenance and that traditional risk assessment methods such as quantitative risk analysis cannot sufficiently address uncertainty in failure data. This paper develops an advanced Failure Mode and Effects Analysis (FMEA) approach through incorporating Fuzzy Rule-Based Bayesian Networks (FRBN) to evaluate the criticality of the hazardous events (HEs) in a container terminal. The rational use of the Degrees of Belief (DoB) in a fuzzy rule base (FRB) facilitates the implementation of the new method in Container Terminal Risk Evaluation (CTRE) in practice. Compared to conventional FMEA methods, the new approach integrates FRB and BN in a complementary manner, in which the former provides a realistic and flexible way to describe input failure information while the latter allows easy updating of risk estimation results and facilitates real-time safety evaluation and dynamic risk-based decision support in container terminals. The proposed approach can also be tailored for wider application in other engineering and management systems, especially when instant risk ranking is required by the stakeholders to measure, predict and improve their system safety and reliability performance

    Use of evidential reasoning for eliciting bayesian subjective probabilities in human reliability analysis: A maritime case

    Get PDF
    Modelling the interdependencies among the factors influencing human error (e.g. the common performance conditions (CPCs) in Cognitive Reliability Error Analysis Method (CREAM)) stimulates the use of Bayesian Networks (BNs) in Human Reliability Analysis (HRA). However, subjective probability elicitation for a BN is often a daunting and complex task. To create conditional probability values for each given variable in a BN requires a high degree of knowledge and engineering effort, often from a group of domain experts. This paper presents a novel hybrid approach for incorporating the evidential reasoning (ER) approach with BNs to facilitate HRA under incomplete data. The kernel of this approach is to develop the best and the worst possible conditional subjective probabilities of the nodes representing the factors influencing HRA when using BNs in human error probability (HEP). The proposed hybrid approach is demonstrated by using CREAM to estimate HEP in the maritime area. The findings from the hybrid ER-BN model can effectively facilitate HEP analysis in specific and decision-making under uncertainty in general

    Are Reasons Causally Relevant for Action? Dharmakīrti and the Embodied Cognition Paradigm

    Get PDF
    How do mental states come to be about something other than their own operations, and thus to serve as ground for effective action? This papers argues that causation in the mental domain should be understood to function on principles of intelligibility (that is, on principles which make it perfectly intelligible for intentions to have a causal role in initiating behavior) rather than on principles of mechanism (that is, on principles which explain how causation works in the physical domain). The paper considers Dharmakīrti’s kāryānumāna argument (that is, the argument that an inference is sound only when one infers from the effect to the cause and not vice versa), and proposes a naturalized account of reasons. On this account, careful scrutiny of the effect can provide a basis for ascertaining the unique causal totality that is its source, but only for reasoning that is context‐specific

    A DMAIC integrated fuzzy FMEA model: A case study in the automotive industry

    Get PDF
    The growing competitiveness in the automotive industry and the strict standards to which it is subject, require high quality standards. For this, quality tools such as the failure mode and effects analysis (FMEA) are applied to quantify the risk of potential failure modes. However, for qualitative defects with subjectivity and associated uncertainty, and the lack of specialized technicians, it revealed the inefficiency of the visual inspection process, as well as the limitations of the FMEA that is applied to it. The fuzzy set theory allows dealing with the uncertainty and subjectivity of linguistic terms and, together with the expert systems, allows modeling of the knowledge involved in tasks that require human expertise. In response to the limitations of FMEA, a fuzzy FMEA system was proposed. Integrated in the design, measure, analyze, improve and control (DMAIC) cycle, the proposed system allows the representation of expert knowledge and improves the analysis of subjective failures, hardly detected by visual inspection, compared to FMEA. The fuzzy FMEA system was tested in a real case study at an industrial manufacturing unit. The identified potential failure modes were analyzed and a fuzzy risk priority number (RPN) resulted, which was compared with the classic RPN. The main results revealed several differences between both. The main differences between fuzzy FMEA and classical FMEA come from the non-linear relationship between the variables and in the attribution of an RPN classification that assigns linguistic terms to the results, thus allowing a strengthening of the decision-making regarding the mitigation actions of the most “important” failure modes.publishersversionpublishe

    Quantitative maritime security assessment: a 2020 vision

    Get PDF
    Maritime security assessment is moving towards a proactive risk-based regime. This opens the way for security analysts and managers to explore and exploit flexible and advanced risk modelling and decision-making approaches in maritime transport. In this article, following a review of maritime security risk assessment, a generic quantitative security assessment methodology is developed. Novel mathematical models for security risk analysis and management are outlined and integrated to demonstrate their use in the developed framework. Such approaches may be used to facilitate security risk modelling and decision making in situations where conventional quantitative risk analysis techniques cannot be appropriately applied. Finally, recommendations on further exploitation of advances in risk and uncertainty modelling technology are suggested with respect to maritime security risk quantification and management
    corecore