4,924 research outputs found

    Advances in Patient Classification for Traditional Chinese Medicine: A Machine Learning Perspective

    Get PDF
    As a complementary and alternative medicine in medical field, traditional Chinese medicine (TCM) has drawn great attention in the domestic field and overseas. In practice, TCM provides a quite distinct methodology to patient diagnosis and treatment compared to western medicine (WM). Syndrome (ZHENG or pattern) is differentiated by a set of symptoms and signs examined from an individual by four main diagnostic methods: inspection, auscultation and olfaction, interrogation, and palpation which reflects the pathological and physiological changes of disease occurrence and development. Patient classification is to divide patients into several classes based on different criteria. In this paper, from the machine learning perspective, a survey on patient classification issue will be summarized on three major aspects of TCM: sign classification, syndrome differentiation, and disease classification. With the consideration of different diagnostic data analyzed by different computational methods, we present the overview for four subfields of TCM diagnosis, respectively. For each subfield, we design a rectangular reference list with applications in the horizontal direction and machine learning algorithms in the longitudinal direction. According to the current development of objective TCM diagnosis for patient classification, a discussion of the research issues around machine learning techniques with applications to TCM diagnosis is given to facilitate the further research for TCM patient classification

    Unsupervised Learning and Multipartite Network Models: A Promising Approach for Understanding Traditional Medicine

    Get PDF
    The ultimate goal of precision medicine is to determine right treatment for right patients based on precise diagnosis. To achieve this goal, correct stratification of patients using molecular features and clinical phenotypes is crucial. During the long history of medical science, our understanding on disease classification has been improved greatly by chemistry and molecular biology. Nowadays, we gain access to large scale patient-derived data by high-throughput technologies, generating a greater need for data science including unsupervised learning and network modeling. Unsupervised learning methods such as clustering could be a better solution to stratify patients when there is a lack of predefined classifiers. In network modularity analysis, clustering methods can be also applied to elucidate the complex structure of biological and disease networks at the systems level. In this review, we went over the main points of clustering analysis and network modeling, particularly in the context of Traditional Chinese medicine (TCM). We showed that this approach can provide novel insights on the rationale of classification for TCM herbs. In a case study, using a modularity analysis of multipartite networks, we illustrated that the TCM classifications are associated with the chemical properties of the herb ingredients. We concluded that multipartite network modeling may become a suitable data integration tool for understanding the mechanisms of actions of traditional medicine.Peer reviewe

    Study on TCM Syndrome Differentiation of Primary Liver Cancer Based on the Analysis of Latent Structural Model

    Get PDF
    Primary liver cancer (PLC) is one of the most common malignant tumors because of its high incidence and high mortality. Traditional Chinese medicine (TCM) plays an active role in the treatment of PLC. As the most important part in the TCM system, syndrome differentiation based on the clinical manifestations from traditional four diagnostic methods has met great challenges and questions with the lack of statistical validation support. In this study, we provided evidences for TCM syndrome differentiation of PLC using the method of analysis of latent structural model from clinic data, thus providing basis for establishing TCM syndrome criteria. And also we obtain the common syndromes of PLC as well as their typical clinical manifestations, respectively

    A comparative analysis of chronic obstructive pulmonary disease using machine learning, and deep learning

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a general clinical issue in numerous countries considered the fifth reason for inability and the third reason for mortality on a global scale within 2021. From recent reviews, a deep convolutional neural network (CNN) is used in the primary analysis of the deadly COPD, which uses the computed tomography (CT) images procured from the deep learning tools. Detection and analysis of COPD using several image processing techniques, deep learning models, and machine learning models are notable contributions to this review. This research aims to cover the detailed findings on pulmonary diseases or lung diseases, their causes, and symptoms, which will help treat infections with high performance and a swift response. The articles selected have more than 80% accuracy and are tabulated and analyzed for sensitivity, specificity, and area under the curve (AUC) using different methodologies. This research focuses on the various tools and techniques used in COPD analysis and eventually provides an overview of COPD with coronavirus disease 2019 (COVID-19) symptoms.

    Using classification and regression tree modelling to investigate response shift patterns in dentine hypersensitivity

    Get PDF
    BACKGROUND: Dentine hypersensitivity (DH) affects people's quality of life (QoL). However changes in the internal meaning of QoL, known as Response shift (RS) may undermine longitudinal assessment of QoL. This study aimed to describe patterns of RS in people with DH using Classification and Regression Trees (CRT) and to explore the convergent validity of CRT with the then-test and ideals approaches. METHODS: Data from an 8-week clinical trial of mouthwashes for dentine hypersensitivity (n = 75) using the Dentine Hypersensitivity Experience Questionnaire (DHEQ) as the outcome measure, were analysed. CRT was used to examine 8-week changes in DHEQ total score as a dependent variable with clinical status for DH and each DHEQ subscale score (restrictions, coping, social, emotional and identity) as independent variables. Recalibration was inferred when the clinical change was not consistent with the DHEQ change score using a minimally important difference for DHEQ of 22 points. Reprioritization was inferred by changes in the relative importance of each subscale to the model over time. RESULTS: Overall, 50.7% of participants experienced a clinical improvement in their DH after treatment and 22.7% experienced an important improvement in their quality of life. Thirty-six per cent shifted their internal standards downward and 14.7% upwards, suggesting recalibration. Reprioritization occurred over time among the social and emotional impacts of DH. CONCLUSIONS: CRT was a useful method to reveal both, the types and nature of RS in people with a mild health condition and demonstrated convergent validity with design based approaches to detect RS
    corecore