63,924 research outputs found

    Specifying nonspecific evidence

    Get PDF
    In an earlier article [J. Schubert, On nonspecific evidence, Int. J. Intell. Syst. 8(6), 711-725 (1993)] we established within Dempster-Shafer theory a criterion function called the metaconflict function. With this criterion we can partition into subsets a set of several pieces of evidence with propositions that are weakly specified in the sense that it may be uncertain to which event a proposition is referring. Each subset in the partitioning is representing a separate event. The metaconflict function was derived as the plausibility that the partitioning is correct when viewing the conflict in Dempster's rule within each subset as a newly constructed piece of metalevel evidence with a proposition giving support against the entire partitioning. In this article we extend the results of the previous article. We will not only find the most plausible subset for each piece of evidence as was done in the earlier article. In addition we will specify each piece of nonspecific evidence, in the sense that we find to which events the proposition might be referring, by finding the plausibility for every subset that this piece of evidence belong to the subset. In doing this we will automatically receive indication that some evidence might be false. We will then develop a new methodology to exploit these newly specified pieces of evidence in a subsequent reasoning process. This will include methods to discount evidence based on their degree of falsity and on their degree of credibility due to a partial specification of affiliation, as well as a refined method to infer the event of each subset.Comment: 39 pages, 2 figure

    Adaptive imputation of missing values for incomplete pattern classification

    Get PDF
    In classification of incomplete pattern, the missing values can either play a crucial role in the class determination, or have only little influence (or eventually none) on the classification results according to the context. We propose a credal classification method for incomplete pattern with adaptive imputation of missing values based on belief function theory. At first, we try to classify the object (incomplete pattern) based only on the available attribute values. As underlying principle, we assume that the missing information is not crucial for the classification if a specific class for the object can be found using only the available information. In this case, the object is committed to this particular class. However, if the object cannot be classified without ambiguity, it means that the missing values play a main role for achieving an accurate classification. In this case, the missing values will be imputed based on the K-nearest neighbor (K-NN) and self-organizing map (SOM) techniques, and the edited pattern with the imputation is then classified. The (original or edited) pattern is respectively classified according to each training class, and the classification results represented by basic belief assignments are fused with proper combination rules for making the credal classification. The object is allowed to belong with different masses of belief to the specific classes and meta-classes (which are particular disjunctions of several single classes). The credal classification captures well the uncertainty and imprecision of classification, and reduces effectively the rate of misclassifications thanks to the introduction of meta-classes. The effectiveness of the proposed method with respect to other classical methods is demonstrated based on several experiments using artificial and real data sets
    • …
    corecore