26 research outputs found

    Clockless Continuous-Time Neural Spike Sorting: Method, Implementation and Evaluation

    No full text
    In this paper, we present a new method for neural spike sorting based on Continuous Time (CT) signal processing. A set of CT based features are proposed and extracted from CT sampled pulses, and a complete event-driven spike sorting algorithm that performs classification based on these features is developed. Compared to conventional methods for spike sorting, the hardware implementation of the proposed method does not require any synchronisation clock for logic circuits, and thus its power consumption depend solely on the spike activity. This has been implemented using a variable quantisation step CT analogue to digital converter (ADC) with custom digital logic that is driven by level crossing events. Simulation results using synthetic neural data shows a comparable accuracy compared to template matching (TM) and Principle Components Analysis (PCA) based discrete sampled classification

    Continuous-time acquisition of biosignals using a charge-based ADC topology

    Get PDF
    This paper investigates continuous-time (CT) signal acquisition as an activity-dependent and nonuniform sampling alternative to conventional fixed-rate digitisation. We demonstrate the applicability to biosignal representation by quantifying the achievable bandwidth saving by nonuniform quantisation to commonly recorded biological signal fragments allowing a compression ratio of ≈5 and 26 when applied to electrocardiogram and extracellular action potential signals, respectively. We describe several desirable properties of CT sampling, including bandwidth reduction, elimination/reduction of quantisation error, and describe its impact on aliasing. This is followed by demonstration of a resource-efficient hardware implementation. We propose a novel circuit topology for a charge-based CT analogue-to-digital converter that has been optimized for the acquisition of neural signals. This has been implemented in a commercially available 0.35 μm CMOS technology occupying a compact footprint of 0.12 mm 2 . Silicon verified measurements demonstrate an 8-bit resolution and a 4 kHz bandwidth with static power consumption of 3.75 μW from a 1.5 V supply. The dynamic power dissipation is completely activity-dependent, requiring 1.39 pJ energy per conversion

    Resource-Constrained Acquisition Circuits for Next Generation Neural Interfaces

    Get PDF
    The development of neural interfaces allowing the acquisition of signals from the cortex of the brain has seen an increasing amount of interest both in academic research as well as in the commercial space due to their ability to aid people with various medical conditions, such as spinal cord injuries, as well as their potential to allow more seamless interactions between people and machines. While it has already been demonstrated that neural implants can allow tetraplegic patients to control robotic arms, thus to an extent returning some motoric function, the current state of the art often involves the use of heavy table-top instruments connected by wires passing through the patient’s skull, thus making the applications impractical and chronically infeasible. Those limitations are leading to the development of the next generation of neural interfaces that will overcome those issues by being minimal in size and completely wireless, thus paving a way to the possibility of their chronic application. Their development however faces several challenges in numerous aspects of engineering due to constraints presented by their minimal size, amount of power available as well as the materials that can be utilised. The aim of this work is to explore some of those challenges and investigate novel circuit techniques that would allow the implementation of acquisition analogue front-ends under the presented constraints. This is facilitated by first giving an overview of the problematic of recording electrodes and their electrical characterisation in terms of their impedance profile and added noise that can be used to guide the design of analogue front-ends. Continuous time (CT) acquisition is then investigated as a promising signal digitisation technique alternative to more conventional methods in terms of its suitability. This is complemented by a description of practical implementations of a CT analogue-to-digital converter (ADC) including a novel technique of clockless stochastic chopping aimed at the suppression of flicker noise that commonly affects the acquisition of low-frequency signals. A compact design is presented, implementing a 450 nW, 5.5 bit ENOB CT ADC, occupying an area of 0.0288 mm2 in a 0.18 μm CMOS technology, making this the smallest presented design in literature to the best of our knowledge. As completely wireless neural implants rely on power delivered through wireless links, their supply voltage is often subject to large high frequency variations as well voltage uncertainty making it necessary to design reference circuits and voltage regulators providing stable reference voltage and supply in the constrained space afforded to them. This results in numerous challenges that are explored and a design of a practical implementation of a reference circuit and voltage regulator is presented. Two designs in a 0.35 μm CMOS technology are presented, showing respectively a measured PSRR of ≈60 dB and ≈53 dB at DC and a worst-case PSRR of ≈42 dB and ≈33 dB with a less than 1% standard deviation in the output reference voltage of 1.2 V while consuming a power of ≈7 μW. Finally, ΣΔ modulators are investigated for their suitability in neural signal acquisition chains, their properties explained and a practical implementation of a ΣΔ DC-coupled neural acquisition circuit presented. This implements a 10-kHz, 40 dB SNDR ΣΔ analogue front-end implemented in a 0.18 μm CMOS technology occupying a compact area of 0.044 μm2 per channel while consuming 31.1 μW per channel.Open Acces

    Energy-Efficient Time-Based Encoders and Digital Signal Processors in Continuous Time

    Get PDF
    Continuous-time (CT) data conversion and continuous-time digital signal processing (DSP) are an interesting alternative to conventional methods of signal conversion and processing. This alternative proposes time-based encoding that may not suffer from aliasing; shows superior spectral properties (e.g. no quantization noise floor); and enables time-based, event-driven, flexible signal processing using digital circuits, thus scaling well with technology. Despite these interesting features, this approach has so far been limited by the CT encoder, due to both its relatively poor energy efficiency and the constraints it imposes on the subsequent CT DSP. In this thesis, we present three principles that address these limitations and help improve the CT ADC/DSP system. First, an adaptive-resolution encoding scheme that achieves first-order reconstruction with simple circuitry is proposed. It is shown that for certain signals, the scheme can significantly reduce the number of samples generated per unit of time for a given accuracy compared to schemes based on zero-order-hold reconstruction, thus promising to lead to low dynamic power dissipation at the system level. Presented next is a novel time-based CT ADC architecture, and associated encoding scheme, that allows a compact, energy-efficient circuit implementation, and achieves first-order quantization error spectral shaping. The design of a test chip, implemented in a 0.65-V 28-nm FDSOI process, that includes this CT ADC and a 10-tap programmable FIR CT DSP to process its output is described. The system achieves 32 dB – 42 dB SNDR over a 10 MHz – 50 MHz bandwidth, occupies 0.093 mm2, and dissipates 15 µW–163 µW as the input amplitude goes from zero to full scale. Finally, an investigation into the possibility of CT encoding using voltage-controlled oscillators is undertaken, and it leads to a CT ADC/DSP system architecture composed primarily of asynchronous digital delays. The latter makes the system highly digital and technology-scaling-friendly and, hence, is particularly attractive from the point of view of technology migration. The design of a test chip, where this delay-based CT ADC/DSP system architecture is used to implement a 16-tap programmable FIR filter, in a 1.2-V 28-nm FDSOI process, is described. Simulations show that the system will achieve a 33 dB – 40 dB SNDR over a 600 MHz bandwidth, while dissipating 4 mW

    Signal Encoding and Digital Signal Processing in Continuous Time

    Get PDF
    This work investigates signal encoding in, and architectures of, digital signal processing systems that function in continuous time (CT). Unlike conventional digital signal processors (DSPs), which rely on a clock to dictate the sampling times of an analog-to-digital converter (ADC) and to provide the tap delay timing, CT DSPs function entirely in continuous time, without a sampling or a synchronizing clock. The samples of a CT DSP system are generated and processed only when some measure of the input signal crosses a predetermined threshold. The effective sampling rate and the dynamic power dissipation of a CT digital system automatically adapt to the activity of the input signal. The properties of signals sampled in continuous time are investigated in this thesis. A technique for reducing the effective sampling rate of a CT system is presented, in which the digital signal encoding is varied by adjusting the resolution according to a property of the input. A variable-resolution system leads to a decrease in the number of samples generated, a reduction in the power dissipation and a reduction in the effective chip area of a CT DSP, all without sacrificing in-band performance. The properties of several asynchronous signal-driven sampling techniques are analyzed and compared. The architecture and signal encoding of CT DSPs for signals in the lower gigahertz frequency range are investigated, with consideration of speed and accuracy limitations in the context of submicron CMOS technologies. A per-edge digital signal encoding technique is developed, which bypasses timing problems of processing high-speed digital signals; the properties of per-edge encoded signals are discussed. The design considerations of a low-resolution per-edge-encoded gigahertz-range CT DSP are discussed and an implementation for a possible application is detailed. A prototype chip has been fabricated in ST 65 nm CMOS technology, which has a compact processor core area of 0.073 mm^2. The implemented CT digital processor achieves SNDR of over 20 dB with 3 bits of resolution and a maximum usable -3 dB bandwidth of 0.8 GHz to 3.2 GHz. The processor can be configured as a one-tap to six-tap CT FIR filter and has an active power dissipation that varies from 0.27 mW to 9.5 mW, depending on the amplitude and frequency of the input signal

    Power efficient, event driven data acquisition and processing using asynchronous techniques

    Get PDF
    PhD ThesisData acquisition systems used in remote environmental monitoring equipment and biological sensor nodes rely on limited energy supply soured from either energy harvesters or battery to perform their functions. Among the building blocks of these systems are power hungry Analogue to Digital Converters and Digital Signal Processors which acquire and process samples at predetermined rates regardless of the monitored signal’s behavior. In this work we investigate power efficient event driven data acquisition and processing techniques by implementing an asynchronous ADC and an event driven power gated Finite Impulse Response (FIR) filter. We present an event driven single slope ADC capable of generating asynchronous digital samples based on the input signal’s rate of change. It utilizes a rate of change detection circuit known as the slope detector to determine at what point the input signal is to be sampled. After a sample has been obtained it’s absolute voltage value is time encoded and passed on to a Time to Digital Converter (TDC) as part of a pulse stream. The resulting digital samples generated by the TDC are produced at a rate that exhibits the same rate of change profile as that of the input signal. The ADC is realized in 0.35mm CMOS process, covers a silicon area of 340mm by 218mm and consumes power based on the input signal’s frequency. The samples from the ADC are asynchronous in nature and exhibit random time periods between adjacent samples. In order to process such asynchronous samples we present a FIR filter that is able to successfully operate on the samples and produce the desired result. The filter also poses the ability to turn itself off in-between samples that have longer sample periods in effect saving power in the process

    Continuous-Time and Companding Digital Signal Processors Using Adaptivity and Asynchronous Techniques

    Get PDF
    The fully synchronous approach has been the norm for digital signal processors (DSPs) for many decades. Due to its simplicity, the classical DSP structure has been used in many applications. However, due to its rigid discrete-time operation, a classical DSP has limited efficiency or inadequate resolution for some emerging applications, such as processing of multimedia and biological signals. This thesis proposes fundamentally new approaches to designing DSPs, which are different from the classical scheme. The defining characteristic of all new DSPs examined in this thesis is the notion of "adaptivity" or "adaptability." Adaptive DSPs dynamically change their behavior to adjust to some property of their input stream, for example the rate of change of the input. This thesis presents both enhancements to existing adaptive DSPs, as well as new adaptive DSPs. The main class of DSPs that are examined throughout the thesis are continuous-time (CT) DSPs. CT DSPs are clock-less and event-driven; they naturally adapt their activity and power consumption to the rate of their inputs. The absence of a clock also provides a complete avoidance of aliasing in the frequency domain, hence improved signal fidelity. The core of this thesis deals with the complete and systematic design of a truly general-purpose CT DSP. A scalable design methodology for CT DSPs is presented. This leads to the main contribution of this thesis, namely a new CT DSP chip. This chip is the first general-purpose CT DSP chip, able to process many different classes of CT and synchronous signals. The chip has the property of handling various types of signals, i.e. various different digital modulations, both synchronous and asynchronous, without requiring any reconfiguration; such property is presented for the first time CT DSPs and is impossible for classical DSPs. As opposed to previous CT DSPs, which were limited to using only one type of digital format, and whose design was hard to scale for different bandwidths and bit-widths, this chip has a formal, robust and scalable design, due to the systematic usage of asynchronous design techniques. The second contribution of this thesis is a complete methodology to design adaptive delay lines. In particular, it is shown how to make the granularity, i.e. the number of stages, adaptive in a real-time delay line. Adaptive granularity brings about a significant improvement in the line's power consumption, up to 70% as reported by simulations on two design examples. This enhancement can have a direct large power impact on any CT DSP, since a delay line consumes the majority of a CT DSP's power. The robust methodology presented in this thesis allows safe dynamic reconfiguration of the line's granularity, on-the-fly and according to the input traffic. As a final contribution, the thesis also examines two additional DSPs: one operating the CT domain and one using the companding technique. The former operates only on level-crossing samples; the proposed methodology shows a potential for high-quality outputs by using a complex interpolation function. Finally, a companding DSP is presented for MPEG audio. Companding DSPs adapt their dynamic range to the amplitude of their input; the resulting can offer high-quality outputs even for small inputs. By applying companding to MPEG DSPs, it is shown how the DSP distortion can be made almost inaudible, without requiring complex arithmetic hardware

    Low Power Circuits for Smart Flexible ECG Sensors

    Get PDF
    Cardiovascular diseases (CVDs) are the world leading cause of death. In-home heart condition monitoring effectively reduced the CVD patient hospitalization rate. Flexible electrocardiogram (ECG) sensor provides an affordable, convenient and comfortable in-home monitoring solution. The three critical building blocks of the ECG sensor i.e., analog frontend (AFE), QRS detector, and cardiac arrhythmia classifier (CAC), are studied in this research. A fully differential difference amplifier (FDDA) based AFE that employs DC-coupled input stage increases the input impedance and improves CMRR. A parasitic capacitor reuse technique is proposed to improve the noise/area efficiency and CMRR. An on-body DC bias scheme is introduced to deal with the input DC offset. Implemented in 0.35m CMOS process with an area of 0.405mm2, the proposed AFE consumes 0.9W at 1.8V and shows excellent noise effective factor of 2.55, and CMRR of 76dB. Experiment shows the proposed AFE not only picks up clean ECG signal with electrodes placed as close as 2cm under both resting and walking conditions, but also obtains the distinct -wave after eye blink from EEG recording. A personalized QRS detection algorithm is proposed to achieve an average positive prediction rate of 99.39% and sensitivity rate of 99.21%. The user-specific template avoids the complicate models and parameters used in existing algorithms while covers most situations for practical applications. The detection is based on the comparison of the correlation coefficient of the user-specific template with the ECG segment under detection. The proposed one-target clustering reduced the required loops. A continuous-in-time discrete-in-amplitude (CTDA) artificial neural network (ANN) based CAC is proposed for the smart ECG sensor. The proposed CAC achieves over 98% classification accuracy for 4 types of beats defined by AAMI (Association for the Advancement of Medical Instrumentation). The CTDA scheme significantly reduces the input sample numbers and simplifies the sample representation to one bit. Thus, the number of arithmetic operations and the ANN structure are greatly simplified. The proposed CAC is verified by FPGA and implemented in 0.18m CMOS process. Simulation results show it can operate at clock frequencies from 10KHz to 50MHz. Average power for the patient with 75bpm heart rate is 13.34W

    Design and Optimization of Low-power Level-crossing ADCs

    Get PDF
    This thesis investigates some of the practical issues related to the implementation of level-crossing ADCs in nanometer CMOS. A level-crossing ADC targeting minimum power is designed and measured. Three techniques to circumvent performance limitations due to the zero-crossing detector at the heart of the ADC are proposed and demonstrated: an adaptive resolution algorithm, an adaptive bias current algorithm, and automatic offset cancelation. The ADC, fabricated in 130 nm CMOS, is designed to operate over a 20 kHz bandwidth while consuming a maximum of 8.5 uW. A peak SNDR of 54 dB for this 8-bit ADC demonstrates a key advantage of level-crossing sampling, namely SNDR higher than the classic Nyquist limit

    Smart Sensor Networks For Sensor-Neural Interface

    Get PDF
    One in every fifty Americans suffers from paralysis, and approximately 23% of paralysis cases are caused by spinal cord injury. To help the spinal cord injured gain functionality of their paralyzed or lost body parts, a sensor-neural-actuator system is commonly used. The system includes: 1) sensor nodes, 2) a central control unit, 3) the neural-computer interface and 4) actuators. This thesis focuses on a sensor-neural interface and presents the research related to circuits for the sensor-neural interface. In Chapter 2, three sensor designs are discussed, including a compressive sampling image sensor, an optical force sensor and a passive scattering force sensor. Chapter 3 discusses the design of the analog front-end circuit for the wireless sensor network system. A low-noise low-power analog front-end circuit in 0.5μm CMOS technology, a 12-bit 1MS/s successive approximation register (SAR) analog-to-digital converter (ADC) in 0.18μm CMOS process and a 6-bit asynchronous level-crossing ADC realized in 0.18μm CMOS process are presented. Chapter 4 shows the design of a low-power impulse-radio ultra-wide-band (IR-UWB) transceiver (TRx) that operates at a data rate of up to 10Mbps, with a power consumption of 4.9pJ/bit transmitted for the transmitter and 1.12nJ/bit received for the receiver. In Chapter 5, a wireless fully event-driven electrogoniometer is presented. The electrogoniometer is implemented using a pair of ultra-wide band (UWB) wireless smart sensor nodes interfacing with low power 3-axis accelerometers. The two smart sensor nodes are configured into a master node and a slave node, respectively. An experimental scenario data analysis shows higher than 90% reduction of the total data throughput using the proposed fully event-driven electrogoniometer to measure joint angle movements when compared with a synchronous Nyquist-rate sampling system. The main contribution of this thesis includes: 1) the sensor designs that emphasize power efficiency and data throughput efficiency; 2) the fully event-driven wireless sensor network system design that minimizes data throughput and optimizes power consumption
    corecore