2,102 research outputs found

    Autonomous Search and Rescue with Modeling and Simulation and Metrics

    Get PDF
    Unmanned Aerial Vehicles (UAVs) provide rapid exploration capabilities in search and rescue missions while accepting more risks than human operations. One limitation in that current UAVs are heavily manpower intensive and such manpower demands limit abilities to expand UAV use. In operation, manpower demands in UAVs range from determining tasks, selecting waypoints, manually controlling platforms and sensors, and tasks in between. Often, even a high level of autonomy is possible with human generated objectives and then autonomous resource allocation, routing, and planning. However, manually generating tasks and scenarios is still manpower intensive. To reduce manpower demands and move towards more autonomous operations, the authors develop an adaptive planning system that takes high level goals from a human operator and translates them into situationally relevant tasking. For expository simulation, the authors further describe constructing a scenario around the 2018 Hawaii Puna lava natural disaster

    Unified devs-based platform for modelling and simulation of hybrid control systems

    Get PDF
    Recent robotic research has led to different architectural approaches that support enactment of automatically synthesized discrete event controllers from user specifications over low-level continuous variable controllers. Simulation of these hybrid control approaches to robotics can be a useful validation tool for robot users and architecture designers, but presents the key challenge of working with discrete and continuous representations of the robot, its environment and its mission plans. In this work we address this challenge showcasing a unified DEVS-based hybrid simulation platform. We model and simulate the hybrid robotic software architecture of a fixed-wing UAV, including the full stack of controllers involved: discrete, hybrid and continuous. We validate the approach experimentally on a typical UAV mapping mission and show that with our unified approach we are able to achieve simulation speed-ups up to one order of magnitude above our previous Software In The Loop simulation setup
    corecore