191,932 research outputs found

    The future of technology enhanced active learning – a roadmap

    Get PDF
    The notion of active learning refers to the active involvement of learner in the learning process, capturing ideas of learning-by-doing and the fact that active participation and knowledge construction leads to deeper and more sustained learning. Interactivity, in particular learnercontent interaction, is a central aspect of technology-enhanced active learning. In this roadmap, the pedagogical background is discussed, the essential dimensions of technology-enhanced active learning systems are outlined and the factors that are expected to influence these systems currently and in the future are identified. A central aim is to address this promising field from a best practices perspective, clarifying central issues and formulating an agenda for future developments in the form of a roadmap

    Paired Comparisons-based Interactive Differential Evolution

    Get PDF
    We propose Interactive Differential Evolution (IDE) based on paired comparisons for reducing user fatigue and evaluate its convergence speed in comparison with Interactive Genetic Algorithms (IGA) and tournament IGA. User interface and convergence performance are two big keys for reducing Interactive Evolutionary Computation (IEC) user fatigue. Unlike IGA and conventional IDE, users of the proposed IDE and tournament IGA do not need to compare whole individuals each other but compare pairs of individuals, which largely decreases user fatigue. In this paper, we design a pseudo-IEC user and evaluate another factor, IEC convergence performance, using IEC simulators and show that our proposed IDE converges significantly faster than IGA and tournament IGA, i.e. our proposed one is superior to others from both user interface and convergence performance points of view

    Simulated evaluation of faceted browsing based on feature selection

    Get PDF
    In this paper we explore the limitations of facet based browsing which uses sub-needs of an information need for querying and organising the search process in video retrieval. The underlying assumption of this approach is that the search effectiveness will be enhanced if such an approach is employed for interactive video retrieval using textual and visual features. We explore the performance bounds of a faceted system by carrying out a simulated user evaluation on TRECVid data sets, and also on the logs of a prior user experiment with the system. We first present a methodology to reduce the dimensionality of features by selecting the most important ones. Then, we discuss the simulated evaluation strategies employed in our evaluation and the effect on the use of both textual and visual features. Facets created by users are simulated by clustering video shots using textual and visual features. The experimental results of our study demonstrate that the faceted browser can potentially improve the search effectiveness

    Between the Lines: documenting the multiple dimensions of computer supported collaborations

    Get PDF
    When we consider the possibilities for the design and evaluation of Computer Supported Collaborative Learning (CSCL) we probably constrain the CS in CSCL to situations in which learners, or groups of learners collaborate with each other around a single computer, across a local intranet or via the global internet. We probably also consider situations in which the computer itself acts as a collaborative partner giving hints and tips either with or without the addition of an animated pedagogical agent. However, there are now many possibilities for CSCL applications to be offered to learners through computing technology that is something other than a desktop computer, such as the TV or a digital toy. In order to understand how such complex and novel interactions work, we need tools to map out the multiple dimensions of collaboration using a whole variety of technologies. This paper discusses the evolution of a documentation technique for collaborative interactions from its roots in a situation where a single learner is collaborating with a software learning partner, through its second generation: group use of multimedia, to its current test-bed: young children using digital toys and associated software. We will explore some of the challenges these different learning situations pose for those involved in the evaluation of collaborative learning

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    Both Generic Design and Different Forms of Designing

    Get PDF
    This paper defends an augmented cognitively oriented "generic-design hypothesis": There are both significant similarities between the design activities implemented in different situations and crucial differences between these and other cognitive activities; yet, characteristics of a design situation (i.e., related to the designers, the artefact, and other task variables influencing these two) introduce specificities in the corresponding design activities and cognitive structures that are used. We thus combine the generic-design hypothesis with that of different "forms" of designing. In this paper, outlining a number of directions that need further elaboration, we propose a series of candidate dimensions underlying such forms of design
    corecore