688 research outputs found

    Soft Gloves: A Review on Recent Developments in Actuation, Sensing, Control and Applications

    Get PDF
    Interest in soft gloves, both robotic and haptic, has enormously grown over the past decade, due to their inherent compliance, which makes them particularly suitable for direct interaction with the human hand. Robotic soft gloves have been developed for hand rehabilitation, for ADLs assistance, or sometimes for both. Haptic soft gloves may be applied in virtual reality (VR) applications or to give sensory feedback in combination with prostheses or to control robots. This paper presents an updated review of the state of the art of soft gloves, with a particular focus on actuation, sensing, and control, combined with a detailed analysis of the devices according to their application field. The review is organized on two levels: a prospective review allows the highlighting of the main trends in soft gloves development and applications, and an analytical review performs an in-depth analysis of the technical solutions developed and implemented in the revised scientific research. Additional minor evaluations integrate the analysis, such as a synthetic investigation of the main results in the clinical studies and trials referred in literature which involve soft gloves

    Design, development and deployment of a hand/wrist exoskeleton for home-based rehabilitation after stroke - SCRIPT project

    Get PDF
    YesChanges in world-wide population trends have provided new demands for new technologies in areas such as care and rehabilitation. Recent developments in the the field of robotics for neurorehabilitation have shown a range of evidence regarding usefulness of these technologies as a tool to augment traditional physiotherapy. Part of the appeal for these technologies is the possibility to place a rehabilitative tool in one’s home, providing a chance for more frequent and accessible technologies for empowering individuals to be in charge of their therapy. Objective: this manuscript introduces the Supervised Care and Rehabilitation Involving Personal Tele-robotics (SCRIPT) project. The main goal is to demonstrate design and development steps involved in a complex intervention, while examining feasibility of using an instrumented orthotic device for home-based rehabilitation after stroke. Methods: the project uses a user-centred design methodology to develop a hand/wrist rehabilitation device for home-based therapy after stroke. The patient benefits from a dedicated user interface that allows them to receive feedback on exercise as well as communicating with the health-care professional. The health-care professional is able to use a dedicated interface to send/receive communications and remote-manage patient’s exercise routine using provided performance benchmarks. Patients were involved in a feasibility study (n=23) and were instructed to use the device and its interactive games for 180 min per week, around 30 min per day, for a period of 6 weeks, with a 2-months follow up. At the time of this study, only 12 of these patients have finished their 6 weeks trial plus 2 months follow up evaluation. Results: with the “use feasibility” as objective, our results indicate 2 patients dropping out due to technical difficulty or lack of personal interests to continue. Our frequency of use results indicate that on average, patients used the SCRIPT1 device around 14 min of self-administered therapy a day. The group average for the system usability scale was around 69% supporting system usability. Conclusions: based on the preliminary results, it is evident that stroke patients were able to use the system in their homes. An average of 14 min a day engagement mediated via three interactive games is promising, given the chronic stage of stroke. During the 2nd year of the project, 6 additional games with more functional relevance in their interaction have been designed to allow for a more variant context for interaction with the system, thus hoping to positively influence the exercise duration. The system usability was tested and provided supporting evidence for this parameter. Additional improvements to the system are planned based on formative feedback throughout the project and during the evaluations. These include a new orthosis that allows a more active control of the amount of assistance and resistance provided, thus aiming to provide a more challenging interaction.This work has been partially funded under Grant FP7-ICT-288698(SCRIPT) of the European Community Seventh Framework Programme

    Tele-Rehabilitation Versus Local Rehabilitation Therapies Assisted by Robotic Devices: A Pilot Study with Patients

    Get PDF
    The present study aims to evaluate the advantages of a master-slave robotic rehabilitation therapy in which the patient is assisted in real-time by a therapist. We have also explored if this type of strategy is applicable in a tele-rehabilitation environment. A pilot study has been carried out involving 10 patients who have performed a point-to-point rehabilitation exercise supported by three assistance modalities: fixed assistance (without therapist interaction), local therapist assistance, and remote therapist assistance in a simulated tele-rehabiliation scenario. The rehabilitation exercise will be performed using an upper-limb rehabilitation robotic device that assists the patients through force fields. The results suggest that the assistance provided by the therapist is better adapted to patient needs than fixed assistance mode. Therefore, it maximizes the patient’s level of effort, which is an important aspect to improve the rehabilitation outcomes. We have also seen that in a tele-rehabilitation environment it is more difficult to assess when to assist the patient than locally. However, the assistance suits patients better than the fixed assistance mode.This work was funded by the Conselleria d’Educacio, Cultura i Esport of Generalitat Valenciana by the European Social Fund—Investing in your Future, through the grant ACIF 2018/214, PEJ2018-002684-A and PEJ2018-002670-A, and by the Spanish Ministry of Science and Innovation through the project PID2019-108310RB-I00

    Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation

    Get PDF
    BACKGROUND: There is a need to improve semi-autonomous stroke therapy in home environments often characterized by low supervision of clinical experts and low extrinsic motivation. Our distributed device approach to this problem consists of an integrated suite of low-cost robotic/computer-assistive technologies driven by a novel universal access software framework called UniTherapy. Our design strategy for personalizing the therapy, providing extrinsic motivation and outcome assessment is presented and evaluated. METHODS: Three studies were conducted to evaluate the potential of the suite. A conventional force-reflecting joystick, a modified joystick therapy platform (TheraJoy), and a steering wheel platform (TheraDrive) were tested separately with the UniTherapy software. Stroke subjects with hemiparesis and able-bodied subjects completed tracking activities with the devices in different positions. We quantify motor performance across subject groups and across device platforms and muscle activation across devices at two positions in the arm workspace. RESULTS: Trends in the assessment metrics were consistent across devices with able-bodied and high functioning strokes subjects being significantly more accurate and quicker in their motor performance than low functioning subjects. Muscle activation patterns were different for shoulder and elbow across different devices and locations. CONCLUSION: The Robot/CAMR suite has potential for stroke rehabilitation. By manipulating hardware and software variables, we can create personalized therapy environments that engage patients, address their therapy need, and track their progress. A larger longitudinal study is still needed to evaluate these systems in under-supervised environments such as the home

    Rehabilitative devices for a top-down approach

    Get PDF
    In recent years, neurorehabilitation has moved from a "bottom-up" to a "top down" approach. This change has also involved the technological devices developed for motor and cognitive rehabilitation. It implies that during a task or during therapeutic exercises, new "top-down" approaches are being used to stimulate the brain in a more direct way to elicit plasticity-mediated motor re-learning. This is opposed to "Bottom up" approaches, which act at the physical level and attempt to bring about changes at the level of the central neural system. Areas covered: In the present unsystematic review, we present the most promising innovative technological devices that can effectively support rehabilitation based on a top-down approach, according to the most recent neuroscientific and neurocognitive findings. In particular, we explore if and how the use of new technological devices comprising serious exergames, virtual reality, robots, brain computer interfaces, rhythmic music and biofeedback devices might provide a top-down based approach. Expert commentary: Motor and cognitive systems are strongly harnessed in humans and thus cannot be separated in neurorehabilitation. Recently developed technologies in motor-cognitive rehabilitation might have a greater positive effect than conventional therapies

    Technology-supported training of arm-hand skills in stroke

    Get PDF
    Impaired arm-hand performance is a serious consequence of stroke that is associated with reduced self-efficacy and poor quality of life. Task-oriented arm training is a therapy approach that is known to improve skilled arm-hand performance, even in chronic stages after stroke. At the start of this project, little knowledge had been consolidated regarding taskoriented arm training characteristics, especially in the field of technology-supported rehabilitation. The feasibility and effects of technology-supported client-centred task-oriented training on skilled arm-hand performance had not been investigated but to a very limited degree. Reviewing literature on rehabilitation and motor learning in stroke led to the identification of therapy oriented criteria for rehabilitation technology aiming to influence skilled arm-hand performance (chapter 2). Most rehabilitation systems reported in literature to date are robotic systems that are aimed at providing an engaging exercise environment and feedback on motor performance. Both, feedback and engaging exercises are important for motivating patients to perform a high number of exercise repetitions and prolonged training, which are important factors for motor learning. The review also found that current rehabilitation technology is focussed mainly on providing treatment at a function level, thereby improving joint range of motion, muscle strength and parameters such as movement speed and smoothness of movement during analytical movements. However, related research has found no effects of robot-supported training at the activity level. The review concluded that a challenge exists for upper extremity rehabilitation technology in stroke patients to also provide more patienttailored task-oriented arm-hand training in natural environments to support the learning of skilled arm-hand performance. Besides mapping the strengths of different technological solutions, the use of outcome measures and training protocols needs to become more standardized across similar interventions, in order to help determine which training solutions are most suitable for specific patient categories. Chapter 4 contributes towards such a standardization of outcome measurement. A concept is introduced which may guide the clinician/researcher to choose outcome measures for evaluating specific and generalized training effects. As an initial operationalization of this concept, 28 test batteries that have been used in 16 task-oriented training interventions were rated as to whether measurement components were measured by the test. Future research is suggested that elaborates the concept with information on the relative weighing of components in each test, with more test batteries (which may lead to additional components) and by adding more test properties into the concept (e.g. psychometric properties of the tests, possible floor- or ceiling effects). Task-oriented training is one of the training approaches that has been shown to be beneficial for skilled arm-hand performance after stroke. Important mechanisms for motor learning that are identified are patient motivation for such training, and the learning of efficient goaloriented movement strategies and task-specific problem solving. In this thesis we operationalize task-oriented training in terms of 15 components (chapter 3). A systematic review that included 16 randomized controlled trials using task-oriented training in stroke patients, evaluated the effects of these training components on skilled arm-hand performance. The number of training components used in an intervention aimed at improving arm-hand performance after stroke was not associated with the post-treatment effect size. Distributed practice and feedback were associated with the largest post-intervention effect sizes. Random practice and use of clear functional training goals were associated with the largest follow-up effect sizes. It may be that training components that optimize the storage of learned motor performance in the long-term memory are associated with larger treatment effects. Unfortunately, feedback, random practice and distributed practice were reported in very few of the included randomized controlled trials (in only 6,3 and 1 out of the 17 studies respectively). Client-centred training, i.e. training on exercises that support goals that are selected by the patients themselves, improves patient motivation for training. Motivation in turn has proven to positively influence motor learning in stroke patients, as attention during training is heightened and storage of information in the long-term memory improves. Chapter 5 reports on an interview of 40 stroke patients, investigating into training preferences. A list of 46 skills, ranked according to descending training preference scores, was provided that can be used for implementation of exercises in rehabilitation technology, in order for technologysupported training to be client-centred. Chapter 6 introduces T-TOAT, a technology supported task-oriented arm training method that was developed together with colleagues at Adelante (Hoensbroek, NL). T-TOAT enables the implementation of exercises that support task-oriented training in rehabilitation technology. The training method is applicable for different technological systems, e.g. robot and sensor systems, or in combination with functional electrical stimulation, etc. To enable the use of TTOAT for training with the Haptic Master Robot (MOOG-FCS, NL), special software named Haptic TOAT was developed in Adelante together with colleagues at the Centre of Technology in Care of Zuyd University (chapter 6). The software enables the recording of the patient’s movement trajectories, given task constraints and patient possibilities, using the Haptic Master as a recording device. A purpose-made gimbal was attached to the endeffector, leaving the hand free for the use and manipulating objects. The recorded movement can be replayed in a passive mode or in an active mode (active, active-assisted or activeresisted). Haptic feedback is provided when the patient deviates from the recorded movement trajectory, as the patient receives the sensation of bouncing into a wall, as well as feeling a spring that pulls him/her back to the recorded path. The diameter of the tunnel around the recorded trajectory (distance to the wall), and the spring force can be adjusted for each patient. An ongoing clinical trial in which chronic stroke patients train with Haptic-TOAT examines whether Haptic Master provides additional value compared to supporting the same exercises by video-instruction only. Together with Philips Research Europe (Eindhoven,Aachen), the T-TOAT method has been implemented in a sensor based prototype, called Philips Stroke Rehabilitation Exerciser. This system included movement tracking sensors and an exercise board interacting with real life objects. A very strong feature of the system is that feedback is provided to patients (real-time and after exercise performance), based on a comparison of the patient’s exercise performance to individual targets set by the therapist. Chapter 7 reports on a clinical trial investigating arm-hand treatment outcome and patient motivation for technology-supported task-oriented training in chronic stroke patients. It was found that 8 weeks of T-TOAT training improved arm-hand performance in chronic stroke patients significantly on Fugl-Meyer, Action Research Arm Test, and Motor Activity Log. An improvement was found in health-related quality of life. Training effects lasted at least 6 months post-training. Participants reported feeling intrinsically motivated and competent to use the system. The results of this study showed that T-TOAT is feasible. Despite the small number of stroke patients tested (n=9), significant and clinically relevant improvements in skilled arm-hand performance were found. In conclusion, this thesis has made several contributions. It motivated the need for clientcentred task-oriented training, which it has operationalized in terms of 15 components. Four of these 15 components were identified as most beneficial for the patient. A prioritized inventory of arm-hand training preferences of stroke patients was compiled by means of an interview study of 40 subacute and chronic stroke patients. T-TOAT, a method for technology-supported, client-centred, task-oriented training, was conceived and implemented in two target technologies (Haptic Master and Philips Stroke Rehabilitation Exerciser). Its feasibility was demonstrated in a clinical trial showing substantial and durable benefits for the stroke patients. Finally, the thesis contributes towards the standardization of outcome measures which is necessary for charting progress and guiding future developments of technology-supported stroke rehabilitation. Methodological considerations were discussed and several suggestions for future research were presented. The variety of treatment approaches and the various ways of support and challenge that are offered by existing rehabilitation technologies hold a large potential for offering a variety of extra training opportunities to stroke patients that may improve their arm-hand performance. Such solutions will be of increasing importance, to alleviate therapists and reduce economic pressure on the health care system, as the stroke incidence is increasing rapidly over the coming decades

    Development of a hybrid robotic system based on an adaptive and associative assistance for rehabilitation of reaching movement after stroke

    Get PDF
    Stroke causes irreversible neurological damage. Depending on the location and the size of this brain injury, different body functions could result affected. One of the most common consequences is motor impairments. The level of motor impairment affectation varies between post-stroke subjects, but often, it hampers the execution of most activities of daily living. Consequently, the quality of life of the stroke population is severely decreased. The rehabilitation of the upper-limb motor functions has gained special attention in the scientific community due the poor reported prognosis of post-stroke patients for recovering normal upper-extremity function after standard rehabilitation therapy. Driven by the advance of technology and the design of new rehabilitation methods, the use of robot devices, functional electrical stimulation and brain-computer interfaces as a neuromodulation system is proposed as a novel and promising rehabilitation tools. Although the uses of these technologies present potential benefits with respect to standard rehabilitation methods, there still are some milestones to be addressed for the consolidation of these methods and techniques in clinical settings. Mentioned evidences reflect the motivation for this dissertation. This thesis presents the development and validation of a hybrid robotic system based on an adaptive and associative assistance for rehabilitation of reaching movements in post-stroke subjects. The hybrid concept refers the combined use of robotic devices with functional electrical stimulation. Adaptive feature states a tailored assistance according to the users’ motor residual capabilities, while the associative term denotes a precise pairing between the users’ motor intent and the peripheral hybrid assistance. The development of the hybrid platform comprised the following tasks: 1. The identification of the current challenges for hybrid robotic system, considering twofold perspectives: technological and clinical. The hybrid systems submitted in literature were critically reviewed for such purpose. These identified features will lead the subsequent development and method framed in this work. 2. The development and validation of a hybrid robotic system, combining a mechanical exoskeleton with functional electrical stimulation to assist the execution of functional reaching movements. Several subsystems are integrated within the hybrid platform, which interact each other to cooperatively complement the rehabilitation task. Complementary, the implementation of a controller based on functional electrical stimulation to dynamically adjust the level of assistance is addressed. The controller is conceived to tackle one of the main limitations when using electrical stimulation, i.e. the highly nonlinear and time-varying muscle response. An experimental procedure was conducted with healthy and post-stroke patients to corroborate the technical feasibility and the usability evaluation of the system. 3. The implementation of an associative strategy within the hybrid platform. Three different strategies based on electroencephalography and electromyography signals were analytically compared. The main idea is to provide a precise temporal association between the hybrid assistance delivered at the periphery (arm muscles) and the users’ own intention to move and to configure a feasible clinical setup to be use in real rehabilitation scenarios. 4. Carry out a comprehensive pilot clinical intervention considering a small cohort of patient with post-stroke patients to evaluate the different proposed concepts and assess the feasibility of using the hybrid system in rehabilitation settings. In summary, the works here presented prove the feasibility of using the hybrid robotic system as a rehabilitative tool with post-stroke subjects. Moreover, it is demonstrated the adaptive controller is able to adjust the level of assistance to achieve successful tracking movement with the affected arm. Remarkably, the accurate association in time between motor cortex activation, represented through the motor-related cortical potential measured with electroencephalography, and the supplied hybrid assistance during the execution of functional (multidegree of freedom) reaching movement facilitate distributed cortical plasticity. These results encourage the validation of the overall hybrid concept in a large clinical trial including an increased number of patients with a control group, in order to achieve more robust clinical results and confirm the presented herein.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Ramón Ceres Ruiz.- Secretario: Luis Enrique Moreno Lorente.- Vocal: Antonio Olivier

    Assessment and training in home-baesd telerehabilitation ofr arm mobility impairment

    Get PDF
    The aging population and limited healthcare capacities call for a change in how rehabilitation care is provided. There is a need to provide more autonomous and scalable care that can be more easily transferred out of the clinic and into home environments. One important barrier to this objective is achieving reliable assessment of motor performance using low-cost technology. Toward this end, an assessment framework and methodology is proposed. The framework uses 4 sequential games to measure aspects of range of motion, range of force, control of motion, and control of force. Parameters derived from the range of motion task are used to define motion requirements in all subsequent assessment games, while parameters derived from the range of force task are used to define subsequent lifting force requirements. A 12-week usability study was conducted in which 9 patients completed the clinical testing phase and 6 therapists and 7 patients completed the questionnaire. Feedback from the questionnaire shows the system is easy to use and integrates well in the clinical setting. The most commonly requested modifications were the inclusion of more games and the incorporation of hand training. Some initial position and force data are shown for one subject and discussion on implications for mobility assessment using the developed device are provided.Peer Reviewe

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
    • …
    corecore