1,132 research outputs found

    HPC Cloud for Scientific and Business Applications: Taxonomy, Vision, and Research Challenges

    Full text link
    High Performance Computing (HPC) clouds are becoming an alternative to on-premise clusters for executing scientific applications and business analytics services. Most research efforts in HPC cloud aim to understand the cost-benefit of moving resource-intensive applications from on-premise environments to public cloud platforms. Industry trends show hybrid environments are the natural path to get the best of the on-premise and cloud resources---steady (and sensitive) workloads can run on on-premise resources and peak demand can leverage remote resources in a pay-as-you-go manner. Nevertheless, there are plenty of questions to be answered in HPC cloud, which range from how to extract the best performance of an unknown underlying platform to what services are essential to make its usage easier. Moreover, the discussion on the right pricing and contractual models to fit small and large users is relevant for the sustainability of HPC clouds. This paper brings a survey and taxonomy of efforts in HPC cloud and a vision on what we believe is ahead of us, including a set of research challenges that, once tackled, can help advance businesses and scientific discoveries. This becomes particularly relevant due to the fast increasing wave of new HPC applications coming from big data and artificial intelligence.Comment: 29 pages, 5 figures, Published in ACM Computing Surveys (CSUR

    Workflow Partitioning and Deployment on the Cloud using Orchestra

    Get PDF
    Orchestrating service-oriented workflows is typically based on a design model that routes both data and control through a single point - the centralised workflow engine. This causes scalability problems that include the unnecessary consumption of the network bandwidth, high latency in transmitting data between the services, and performance bottlenecks. These problems are highly prominent when orchestrating workflows that are composed from services dispersed across distant geographical locations. This paper presents a novel workflow partitioning approach, which attempts to improve the scalability of orchestrating large-scale workflows. It permits the workflow computation to be moved towards the services providing the data in order to garner optimal performance results. This is achieved by decomposing the workflow into smaller sub workflows for parallel execution, and determining the most appropriate network locations to which these sub workflows are transmitted and subsequently executed. This paper demonstrates the efficiency of our approach using a set of experimental workflows that are orchestrated over Amazon EC2 and across several geographic network regions.Comment: To appear in Proceedings of the IEEE/ACM 7th International Conference on Utility and Cloud Computing (UCC 2014

    Executing Large Scale Scientific Workflows in Public Clouds

    Get PDF
    Scientists in different fields, such as high-energy physics, earth science, and astronomy are developing large-scale workflow applications. In many use cases, scientists need to run a set of interrelated but independent workflows (i.e., workflow ensembles) for the entire scientific analysis. As a workflow ensemble usually contains many sub-workflows in each of which hundreds or thousands of jobs exist with precedence constraints, the execution of such a workflow ensemble makes a great concern with cost even using elastic and pay-as-you-go cloud resources. In this thesis, we develop a set of methods to optimize the execution of large-scale scientific workflows in public clouds with both cost and deadline constraints with a two-step approach. Firstly, we present a set of methods to optimize the execution of scientific workflow in public clouds, with the Montage astronomical mosaic engine running on Amazon EC2 as an example. Secondly, we address three main challenges in realizing benefits of using public clouds when executing large-scale workflow ensembles: (1) execution coordination, (2) resource provisioning, and (3) data staging. To this end, we develop a new pulling-based workflow execution system with a profiling-based resource provisioning strategy. Our results show that our solution system can achieve 80% speed-up, by removing scheduling overhead, compared to the well-known Pegasus workflow management system when running scientific workflow ensembles. Besides, our evaluation using Montage workflow ensembles on around 1000-core Amazon EC2 clusters has demonstrated the efficacy of our resource provisioning strategy in terms of cost effectiveness within deadline
    • …
    corecore