1,424 research outputs found

    CRAFT: A library for easier application-level Checkpoint/Restart and Automatic Fault Tolerance

    Get PDF
    In order to efficiently use the future generations of supercomputers, fault tolerance and power consumption are two of the prime challenges anticipated by the High Performance Computing (HPC) community. Checkpoint/Restart (CR) has been and still is the most widely used technique to deal with hard failures. Application-level CR is the most effective CR technique in terms of overhead efficiency but it takes a lot of implementation effort. This work presents the implementation of our C++ based library CRAFT (Checkpoint-Restart and Automatic Fault Tolerance), which serves two purposes. First, it provides an extendable library that significantly eases the implementation of application-level checkpointing. The most basic and frequently used checkpoint data types are already part of CRAFT and can be directly used out of the box. The library can be easily extended to add more data types. As means of overhead reduction, the library offers a build-in asynchronous checkpointing mechanism and also supports the Scalable Checkpoint/Restart (SCR) library for node level checkpointing. Second, CRAFT provides an easier interface for User-Level Failure Mitigation (ULFM) based dynamic process recovery, which significantly reduces the complexity and effort of failure detection and communication recovery mechanism. By utilizing both functionalities together, applications can write application-level checkpoints and recover dynamically from process failures with very limited programming effort. This work presents the design and use of our library in detail. The associated overheads are thoroughly analyzed using several benchmarks

    Shrink or Substitute: Handling Process Failures in HPC Systems using In-situ Recovery

    Full text link
    Efficient utilization of today's high-performance computing (HPC) systems with complex hardware and software components requires that the HPC applications are designed to tolerate process failures at runtime. With low mean time to failure (MTTF) of current and future HPC systems, long running simulations on these systems require capabilities for gracefully handling process failures by the applications themselves. In this paper, we explore the use of fault tolerance extensions to Message Passing Interface (MPI) called user-level failure mitigation (ULFM) for handling process failures without the need to discard the progress made by the application. We explore two alternative recovery strategies, which use ULFM along with application-driven in-memory checkpointing. In the first case, the application is recovered with only the surviving processes, and in the second case, spares are used to replace the failed processes, such that the original configuration of the application is restored. Our experimental results demonstrate that graceful degradation is a viable alternative for recovery in environments where spares may not be available.Comment: 26th Euromicro International Conference on Parallel, Distributed and network-based Processing (PDP 2018
    • …
    corecore