632 research outputs found

    WoodFisher: Efficient Second-Order Approximation for Neural Network Compression

    Full text link
    Second-order information, in the form of Hessian- or Inverse-Hessian-vector products, is a fundamental tool for solving optimization problems. Recently, there has been significant interest in utilizing this information in the context of deep neural networks; however, relatively little is known about the quality of existing approximations in this context. Our work examines this question, identifies issues with existing approaches, and proposes a method called WoodFisher to compute a faithful and efficient estimate of the inverse Hessian. Our main application is to neural network compression, where we build on the classic Optimal Brain Damage/Surgeon framework. We demonstrate that WoodFisher significantly outperforms popular state-of-the-art methods for one-shot pruning. Further, even when iterative, gradual pruning is considered, our method results in a gain in test accuracy over the state-of-the-art approaches, for pruning popular neural networks (like ResNet-50, MobileNetV1) trained on standard image classification datasets such as ImageNet ILSVRC. We examine how our method can be extended to take into account first-order information, as well as illustrate its ability to automatically set layer-wise pruning thresholds and perform compression in the limited-data regime. The code is available at the following link, https://github.com/IST-DASLab/WoodFisher.Comment: NeurIPS 202

    Estimating Model Uncertainty of Neural Networks in Sparse Information Form

    Get PDF
    We present a sparse representation of model uncertainty for Deep Neural Networks (DNNs) where the parameter posterior is approximated with an inverse formulation of the Multivariate Normal Distribution (MND), also known as the information form. The key insight of our work is that the information matrix, i.e. the inverse of the covariance matrix tends to be sparse in its spectrum. Therefore, dimensionality reduction techniques such as low rank approximations (LRA) can be effectively exploited. To achieve this, we develop a novel sparsification algorithm and derive a cost-effective analytical sampler. As a result, we show that the information form can be scalably applied to represent model uncertainty in DNNs. Our exhaustive theoretical analysis and empirical evaluations on various benchmarks show the competitiveness of our approach over the current methods.Comment: Accepted to the Thirty-seventh International Conference on Machine Learning (ICML) 202

    Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging

    Get PDF
    In der angewandten Statistik können Regressionsmodelle mit hochdimensionalen Koeffizienten auftreten, die sich nicht mit gewöhnlichen Computersystemen schätzen lassen. Dies betrifft unter anderem die Analyse digitaler Bilder unter Berücksichtigung räumlich-zeitlicher Abhängigkeiten, wie sie innerhalb der medizinisch-biologischen Forschung häufig vorkommen. In der vorliegenden Arbeit wird ein Verfahren formuliert, das in der Lage ist, Regressionsmodelle mit hochdimensionalen Koeffizienten und nicht-normalverteilten Zielgrößen unter moderaten Anforderungen an die benötigte Hardware zu schätzen. Hierzu wird zunächst im Rahmen strukturiert additiver Regressionsmodelle aufgezeigt, worin die Limitationen aktueller Inferenzansätze bei der Anwendung auf hochdimensionale Problemstellungen liegen, sowie Möglichkeiten diskutiert, diese zu umgehen. Darauf basierend wird ein Algorithmus formuliert, dessen Stärken und Schwächen anhand von Simulationsstudien analysiert werden. Darüber hinaus findet das Verfahren Anwendung in drei verschiedenen Bereichen der medizinisch-biologischen Bildgebung und zeigt dadurch, dass es ein vielversprechender Kandidat für die Beantwortung hochdimensionaler Fragestellungen ist.In applied statistics regression models with high-dimensional coefficients can occur which cannot be estimated using ordinary computers. Amongst others, this applies to the analysis of digital images taking spatio-temporal dependencies into account as they commonly occur within bio-medical research. In this thesis a procedure is formulated which allows to fit regression models with high-dimensional coefficients and non-normal response values requiring only moderate computational equipment. To this end, limitations of different inference strategies for structured additive regression models are demonstrated when applied to high-dimensional problems and possible solutions are discussed. Based thereon an algorithm is formulated whose strengths and weaknesses are subsequently analyzed using simulation studies. Furthermore, the procedure is applied to three different fields of bio-medical imaging from which can be concluded that the algorithm is a promising candidate for answering high-dimensional problems

    Estimating Model Uncertainty of Neural Networks in Sparse Information Form

    Get PDF
    We present a sparse representation of model uncertainty for Deep Neural Networks (DNNs) where the parameter posterior is approximated with an inverse formulation of the Multivariate Normal Distribution (MND), also known as the information form. The key insight of our work is that the information matrix, i.e. the inverse of the covariance matrix tends to be sparse in its spectrum. Therefore, dimensionality reduction techniques such as low rank approximations (LRA) can be effectively exploited. To achieve this, we develop a novel sparsification algorithm and derive a cost-effective analytical sampler. As a result, we show that the information form can be scalably applied to represent model uncertainty in DNNs. Our exhaustive theoretical analysis and empirical evaluations on various benchmarks show the competitiveness of our approach over the current methods

    Continual Learning with Extended Kronecker-factored Approximate Curvature

    Full text link
    We propose a quadratic penalty method for continual learning of neural networks that contain batch normalization (BN) layers. The Hessian of a loss function represents the curvature of the quadratic penalty function, and a Kronecker-factored approximate curvature (K-FAC) is used widely to practically compute the Hessian of a neural network. However, the approximation is not valid if there is dependence between examples, typically caused by BN layers in deep network architectures. We extend the K-FAC method so that the inter-example relations are taken into account and the Hessian of deep neural networks can be properly approximated under practical assumptions. We also propose a method of weight merging and reparameterization to properly handle statistical parameters of BN, which plays a critical role for continual learning with BN, and a method that selects hyperparameters without source task data. Our method shows better performance than baselines in the permuted MNIST task with BN layers and in sequential learning from the ImageNet classification task to fine-grained classification tasks with ResNet-50, without any explicit or implicit use of source task data for hyperparameter selection.Comment: CVPR 202

    Deep networks training and generalization: insights from linearization

    Full text link
    Bien qu'ils soient capables de représenter des fonctions très complexes, les réseaux de neurones profonds sont entraînés à l'aide de variations autour de la descente de gradient, un algorithme qui est basé sur une simple linéarisation de la fonction de coût à chaque itération lors de l'entrainement. Dans cette thèse, nous soutenons qu'une approche prometteuse pour élaborer une théorie générale qui expliquerait la généralisation des réseaux de neurones, est de s'inspirer d'une analogie avec les modèles linéaires, en étudiant le développement de Taylor au premier ordre qui relie des pas dans l'espace des paramètres à des modifications dans l'espace des fonctions. Cette thèse par article comprend 3 articles ainsi qu'une bibliothèque logicielle. La bibliothèque NNGeometry (chapitre 3) sert de fil rouge à l'ensemble des projets, et introduit une Interface de Programmation Applicative (API) simple pour étudier la dynamique d'entrainement linéarisée de réseaux de neurones, en exploitant des méthodes récentes ainsi que de nouvelles accélérations algorithmiques. Dans l'article EKFAC (chapitre 4), nous proposons une approchée de la Matrice d'Information de Fisher (FIM), utilisée dans l'algorithme d'optimisation du gradient naturel. Dans l'article Lazy vs Hasty (chapitre 5), nous comparons la fonction obtenue par dynamique d'entrainement linéarisée (par exemple dans le régime limite du noyau tangent (NTK) à largeur infinie), au régime d'entrainement réel, en utilisant des groupes d'exemples classés selon différentes notions de difficulté. Dans l'article NTK alignment (chapitre 6), nous révélons un effet de régularisation implicite qui découle de l'alignement du NTK au noyau cible, au fur et à mesure que l'entrainement progresse.Despite being able to represent very complex functions, deep artificial neural networks are trained using variants of the basic gradient descent algorithm, which relies on linearization of the loss at each iteration during training. In this thesis, we argue that a promising way to tackle the challenge of elaborating a comprehensive theory explaining generalization in deep networks, is to take advantage of an analogy with linear models, by studying the first order Taylor expansion that maps parameter space updates to function space progress. This thesis by publication is made of 3 papers and a software library. The library NNGeometry (chapter 3) serves as a common thread for all projects, and introduces a simple Application Programming Interface (API) to study the linearized training dynamics of deep networks using recent methods and contributed algorithmic accelerations. In the EKFAC paper (chapter 4), we propose an approximate to the Fisher Information Matrix (FIM), used in the natural gradient optimization algorithm. In the Lazy vs Hasty paper (chapter 5), we compare the function obtained while training using a linearized dynamics (e.g. in the infinite width Neural Tangent Kernel (NTK) limit regime), to the actual training regime, by means of examples grouped using different notions of difficulty. In the NTK alignment paper (chapter 6), we reveal an implicit regularization effect arising from the alignment of the NTK to the target kernel as training progresses
    • …
    corecore