59 research outputs found

    Optimising Structured P2P Networks for Complex Queries

    Get PDF
    With network enabled consumer devices becoming increasingly popular, the number of connected devices and available services is growing considerably - with the number of connected devices es- timated to surpass 15 billion devices by 2015. In this increasingly large and dynamic environment it is important that users have a comprehensive, yet efficient, mechanism to discover services. Many existing wide-area service discovery mechanisms are centralised and do not scale to large numbers of users. Additionally, centralised services suffer from issues such as a single point of failure, high maintenance costs, and difficulty of management. As such, this Thesis seeks a Peer to Peer (P2P) approach. Distributed Hash Tables (DHTs) are well known for their high scalability, financially low barrier of entry, and ability to self manage. They can be used to provide not just a platform on which peers can offer and consume services, but also as a means for users to discover such services. Traditionally DHTs provide a distributed key-value store, with no search functionality. In recent years many P2P systems have been proposed providing support for a sub-set of complex query types, such as keyword search, range queries, and semantic search. This Thesis presents a novel algorithm for performing any type of complex query, from keyword search, to complex regular expressions, to full-text search, over any structured P2P overlay. This is achieved by efficiently broadcasting the search query, allowing each peer to process the query locally, and then efficiently routing responses back to the originating peer. Through experimentation, this technique is shown to be successful when the network is stable, however performance degrades under high levels of network churn. To address the issue of network churn, this Thesis proposes a number of enhancements which can be made to existing P2P overlays in order to improve the performance of both the existing DHT and the proposed algorithm. Through two case studies these enhancements are shown to improve not only the performance of the proposed algorithm under churn, but also the performance of traditional lookup operations in these networks

    Performance analysis of structured peer-to-peer overlays for mobile networks

    Get PDF
    Distributed Hash Table (DHT) based Peer-to-Peer (P2P) overlays have been widely researched and deployed in many applications such as file sharing, IP telephony, content distribution and media streaming applications. However, their deployment has largely been restricted to fixed, wired networks. This is due to the fact that supporting P2P overlays on wireless networks such as the public mobile data network is more challenging due to constraints in terms of data transmissions on cellular networks, limited battery power of the handsets and increased levels of node churn. However, the proliferation of smartphones makes the use of P2P applications on mobile handsets very desirable.  In this paper, we have analysed and evaluated the performance and efficiency of five popular DHT based structured P2P overlays (Chord, Pastry, Kademlia, Broose and EpiChord) under conditions as commonly experienced in public mobile data networks. Our results show that the conditions in mobile networks, including a high churn rate and the relatively low bandwidth availability is best matched by Kademlia and EpiChord. These overlays exhibit a high lookup success ratio and low hop count while consuming a moderate amount of bandwidth. These characteristics make these two overlays suitable candidates for use in mobile networks

    Routing performance of structured overlay in Distributed Hash Tables (DHT) for P2P

    Get PDF
    This paper presents a routing performance analysis of structured P2P overlay network. Due to the rapid development and hectic life, sharing data wirelessly is essential. P2P allows participating peers move freely by joining and leaving the network at any convenience time. Therefore, it exists constraint when one measuring the network performance. Moreover, the design of structured overlay networks is fragmented and with various design. P2P networks need to have a reliable routing protocol. In order to analyse the routing performance, this work simulates three structured overlay protocols-Chord, Pastry and Kademlia using OMNeT++ with INET and OverSim module. The result shows that Pastry is the best among others with 100% routing efficiency. However, Kademlia leads with 12.76% and 18.78% better than Chord and Pastry in lookup hop count and lookup success latency respectively. Hence, Pastry and Kamelia architectures will have a better choice for implementing structured overlay P2P network

    An evaluation of EpiChord in OverSim

    Get PDF
    EpiChord is a Distributed Hash Table (DHT) algorithm which supports data storage/retrieval in large scale distributed systems. It removes the typicalO(logn)-state-per-node restriction imposed by the majority of other DHT topologies by employing a reactive routing state maintenance strategy that amortizes network maintenance costs into lookup queries. Under ideal condition, EpiChord’s lookup performance can approach O(1) hops – with maintenance costs comparable to traditional multi-hop DHTs. This paper presents an implementation of EpiChord in OverSim, and validates the performance of our model against the performance reported in the original EpiChord paper. We also present some adjustments to the algorithm to remove a discrepancy and then compare our modified results with the original ones. Finally, we present additional results showing the EpiChord algorithm is stable over time and performs well for larger networks

    Structured Peer-to-Peer Overlays for NATed Churn Intensive Networks

    Get PDF
    The wide-spread coverage and ubiquitous presence of mobile networks has propelled the usage and adoption of mobile phones to an unprecedented level around the globe. The computing capabilities of these mobile phones have improved considerably, supporting a vast range of third party applications. Simultaneously, Peer-to-Peer (P2P) overlay networks have experienced a tremendous growth in terms of usage as well as popularity in recent years particularly in fixed wired networks. In particular, Distributed Hash Table (DHT) based Structured P2P overlay networks offer major advantages to users of mobile devices and networks such as scalable, fault tolerant and self-managing infrastructure which does not exhibit single points of failure. Integrating P2P overlays on the mobile network seems a logical progression; considering the popularities of both technologies. However, it imposes several challenges that need to be handled, such as the limited hardware capabilities of mobile phones and churn (i.e. the frequent join and leave of nodes within a network) intensive mobile networks offering limited yet expensive bandwidth availability. This thesis investigates the feasibility of extending P2P to mobile networks so that users can take advantage of both these technologies: P2P and mobile networks. This thesis utilises OverSim, a P2P simulator, to experiment with the performance of various P2P overlays, considering high churn and bandwidth consumption which are the two most crucial constraints of mobile networks. The experiment results show that Kademlia and EpiChord are the two most appropriate P2P overlays that could be implemented in mobile networks. Furthermore, Network Address Translation (NAT) is a major barrier to the adoption of P2P overlays in mobile networks. Integrating NAT traversal approaches with P2P overlays is a crucial step for P2P overlays to operate successfully on mobile networks. This thesis presents a general approach of NAT traversal for ring based overlays without the use of a single dedicated server which is then implemented in OverSim. Several experiments have been performed under NATs to determine the suitability of the chosen P2P overlays under NATed environments. The results show that the performance of these overlays is comparable in terms of successful lookups in both NATed and non-NATed environments; with Kademlia and EpiChord exhibiting the best performance. The presence of NATs and also the level of churn in a network influence the routing techniques used in P2P overlays. Recursive routing is more resilient to IP connectivity restrictions posed by NATs but not very robust in high churn environments, whereas iterative routing is more suitable to high churn networks, but difficult to use in NATed environments. Kademlia supports both these routing schemes whereas EpiChord only supports the iterating routing. This undermines the usefulness of EpiChord in NATed environments. In order to harness the advantages of both routing schemes, this thesis presents an adaptive routing scheme, called Churn Aware Routing Protocol (ChARP), combining recursive and iterative lookups where nodes can switch between recursive and iterative routing depending on their lifetimes. The proposed approach has been implemented in OverSim and several experiments have been carried out. The experiment results indicate an improved performance which in turn validates the applicability and suitability of ChARP in NATed environments

    Broadcasting in Prefix Space: P2P Data Dissemination with Predictable Performance

    Full text link
    A broadcast mode may augment peer-to-peer overlay networks with an efficient, scalable data replication function, but may also give rise to a virtual link layer in VPN-type solutions. We introduce a simple broadcasting mechanism that operates in the prefix space of distributed hash tables without signaling. This paper concentrates on the performance analysis of the prefix flooding scheme. Starting from simple models of recursive kk-ary trees, we analytically derive distributions of hop counts and the replication load. Extensive simulation results are presented further on, based on an implementation within the OverSim framework. Comparisons are drawn to Scribe, taken as a general reference model for group communication according to the shared, rendezvous-point-centered distribution paradigm. The prefix flooding scheme thereby confirmed its widely predictable performance and consistently outperformed Scribe in all metrics. Reverse path selection in overlays is identified as a major cause of performance degradation.Comment: final version for ICIW'0

    OnehopMANET: One-hop structured p2p over mobile ad hoc networks

    Get PDF
    There are many common characteristics between P2P (Peer to Peer) overlay networks and MANET (mobile ad hoc networks). Previous work has shown that when used together, the two approaches complement each other and performance synergies can be exploited. While MANET provide wireless connectivity without depending on any pre-existing infrastructure, P2P overlays provide data storage/retrieval functionality. On the other hand, both approaches face common challenges: maintaining connectivity in dynamic and decentralized networks. This paper proposes One hop MANET as a structured P2P over MANET the uses cross-layering with a proactive underlay. Unlike previous work, One hop MANET uses a P2P overlay that is capable of achieving lookups in a single hop. Through simulation we show that this approach offers performance benefits when compared with approaches which employ a multi-hop P2P overlay

    The state of peer-to-peer network simulators

    Get PDF
    Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results

    A performance evaluation of peer-to-peer storage systems

    Get PDF
    This work evaluates the performance of Peer-to-Peer storage systems in structured Peer-to-Peer (P2P) networks under the impacts of a continuous process of nodes joining and leaving the network (Churn). Based on the Distributed Hash Tables (DHT), the peer-to-peer systems provide the means to store data among a large and dynamic set of participating host nodes. We consider the fact that existing solutions do not tolerate a high Churn rate or are not really scalable in terms of number of stored data blocks. The considered performance metrics include number of data blocks lost, bandwidth consumption, latencies and distance of matched lookups. We have selected Pastry, Chord and Kademlia to evaluate the e ect of inopportune connections/disconnections in Peer-to-Peer storage systems, because these selected P2P networks possess distinctive characteristics. Chord is one of the rst structured P2P networks that implements Distributed Hash Tables (DHTs). Similar to Chord, Pastry is based on a ring structure, with the identi er space forming the ring. However, Pastry uses a di erent algorithm than Chord to select the overlay neighbors of a peer. Kademlia is a more recent structured P2P network, with the XOR mechanism for improving distance calculation. DHT deployments are characterized by Churn. But if the frequency of Churn is too high, data blocks can be lost and lookup mechanism begin to incur delays. In architectures that employ DHTs, the choice of algorithm for data replication and maintenance can have a signi cant impact on the performance and reliability. PAST is a persistent Peer-to-Peer storage utility, which replicates complete les on multiple nodes, and uses Pastry for message routing and content location. The hypothesis is that by enhancing the Churn tolerance through building a really e cient replication and maintenance mechanisms, it will: i) Operate better than a peer-to-peer storage system such as PAST especially in replica placement strategy with a fewer data transfers. ii) Resolve le lookups with a match that is closer to the source peer, thus con- serving bandwidth. Our research will involve a series of simulation studies using two network simulators OverSim and OMNeT++. The main results are: Our approach achieves a higher data availability in presence of Churn, than the original PAST replication strategy; For a Churn occuring every minute our strategy loses two times less blocks than PAST; Our replication strategy induces an average of twice less block transfers than PAST

    A one hop overlay system for Mobile Ad Hoc Networks

    Get PDF
    Peer-to-Peer (P2P) overlays were initially proposed for use with wired networks. However, the very rapid proliferation of wireless communication technology has prompted a need for adoption of P2P systems in mobile networks too. There are many common characteristics between P2P overlay networks and Mobile Ad-hoc Networks (MANET). Self-organization, decentralization, a dynamic nature and changing topology are the most commonly shared features. Furthermore, when used together, the two approaches complement each other. P2P overlays provide data storage/retrieval functionality and MANET provides wireless connectivity between clients without depending on any pre-existing infrastructure. P2P overlay networks can be deployed over MANET to address content discovery issues. However, previous research has shown that deploying P2P systems straight over MANET does not exhibit satisfactory performance. Bandwidth limitation, limited resources and node mobility are some of the key constraints. This thesis proposes a novel approach, OneHopOverlay4MANET, to exploit the synergies between MANET and P2P overlays through cross-layering. It combines Distributed Hash Table (DHT) based structured P2P overlays with MANET underlay routing protocols to achieve one logical hop between any pair of overlay nodes. OneHopOverlay4MANET constructs a cross-layer channel to permit direct exchange of routing information between the Application layer, where the overlay operates, and the MANET underlay layer. Consequently, underlay routing information can be shared and used by the overlay. Thus, OneHopOverlay4MANET reduces the typical management traffic when deploying traditional P2P systems over MANET. Moreover, as a result of building one hop overlay, OneHopOverlay4MANET can eliminate the mismatching issue between overlay and underlay and hence resolve key lookups in a short time, enhancing the performance of the overlay. v In this thesis, we present OneHopOverlay4MANET and evaluate its performance when combined with different underlay routing protocols. OneHopOverlay4MANET has been combined with two proactive underlays (OLSR and BATMAN) and with three reactive underlay routing protocols (DSR, AODV and DYMO). In addition, the performance of the proposed system over OLSR has been compared to two recent structured P2P over MANET systems (MA-SP2P and E-SP2P) that adopted OLSR as the routing protocol. The results show that better performance can be achieved using OneHopOverlay4MANET
    corecore