37,825 research outputs found

    Automatic multi-label subject indexing in a multilingual environment

    Get PDF
    This paper presents an approach to automatically subject index fulltext documents with multiple labels based on binary support vector machines(SVM). The aim was to test the applicability of SVMs with a real world dataset. We have also explored the feasibility of incorporating multilingual background knowledge, as represented in thesauri or ontologies, into our text document representation for indexing purposes. The test set for our evaluations has been compiled from an extensive document base maintained by the Food and Agriculture Organization (FAO) of the United Nations (UN). Empirical results show that SVMs are a good method for automatic multi- label classification of documents in multiple languages

    Towards the Automatic Classification of Documents in User-generated Classifications

    Get PDF
    There is a huge amount of information scattered on the World Wide Web. As the information flow occurs at a high speed in the WWW, there is a need to organize it in the right manner so that a user can access it very easily. Previously the organization of information was generally done manually, by matching the document contents to some pre-defined categories. There are two approaches for this text-based categorization: manual and automatic. In the manual approach, a human expert performs the classification task, and in the second case supervised classifiers are used to automatically classify resources. In a supervised classification, manual interaction is required to create some training data before the automatic classification task takes place. In our new approach, we intend to propose automatic classification of documents through semantic keywords and building the formulas generation by these keywords. Thus we can reduce this human participation by combining the knowledge of a given classification and the knowledge extracted from the data. The main focus of this PhD thesis, supervised by Prof. Fausto Giunchiglia, is the automatic classification of documents into user-generated classifications. The key benefits foreseen from this automatic document classification is not only related to search engines, but also to many other fields like, document organization, text filtering, semantic index managing

    Generating indicative-informative summaries with SumUM

    Get PDF
    We present and evaluate SumUM, a text summarization system that takes a raw technical text as input and produces an indicative informative summary. The indicative part of the summary identifies the topics of the document, and the informative part elaborates on some of these topics according to the reader's interest. SumUM motivates the topics, describes entities, and defines concepts. It is a first step for exploring the issue of dynamic summarization. This is accomplished through a process of shallow syntactic and semantic analysis, concept identification, and text regeneration. Our method was developed through the study of a corpus of abstracts written by professional abstractors. Relying on human judgment, we have evaluated indicativeness, informativeness, and text acceptability of the automatic summaries. The results thus far indicate good performance when compared with other summarization technologies

    Automatic categorization of diverse experimental information in the bioscience literature

    Get PDF
    Background: Curation of information from bioscience literature into biological knowledge databases is a crucial way of capturing experimental information in a computable form. During the biocuration process, a critical first step is to identify from all published literature the papers that contain results for a specific data type the curator is interested in annotating. This step normally requires curators to manually examine many papers to ascertain which few contain information of interest and thus, is usually time consuming. We developed an automatic method for identifying papers containing these curation data types among a large pool of published scientific papers based on the machine learning method Support Vector Machine (SVM). This classification system is completely automatic and can be readily applied to diverse experimental data types. It has been in use in production for automatic categorization of 10 different experimental datatypes in the biocuration process at WormBase for the past two years and it is in the process of being adopted in the biocuration process at FlyBase and the Saccharomyces Genome Database (SGD). We anticipate that this method can be readily adopted by various databases in the biocuration community and thereby greatly reducing time spent on an otherwise laborious and demanding task. We also developed a simple, readily automated procedure to utilize training papers of similar data types from different bodies of literature such as C. elegans and D. melanogaster to identify papers with any of these data types for a single database. This approach has great significance because for some data types, especially those of low occurrence, a single corpus often does not have enough training papers to achieve satisfactory performance. Results: We successfully tested the method on ten data types from WormBase, fifteen data types from FlyBase and three data types from Mouse Genomics Informatics (MGI). It is being used in the curation work flow at WormBase for automatic association of newly published papers with ten data types including RNAi, antibody, phenotype, gene regulation, mutant allele sequence, gene expression, gene product interaction, overexpression phenotype, gene interaction, and gene structure correction. Conclusions: Our methods are applicable to a variety of data types with training set containing several hundreds to a few thousand documents. It is completely automatic and, thus can be readily incorporated to different workflow at different literature-based databases. We believe that the work presented here can contribute greatly to the tremendous task of automating the important yet labor-intensive biocuration effort

    Machine Learning in Automated Text Categorization

    Full text link
    The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual definition of a classifier by domain experts) are a very good effectiveness, considerable savings in terms of expert manpower, and straightforward portability to different domains. This survey discusses the main approaches to text categorization that fall within the machine learning paradigm. We will discuss in detail issues pertaining to three different problems, namely document representation, classifier construction, and classifier evaluation.Comment: Accepted for publication on ACM Computing Survey

    Chi-square-based scoring function for categorization of MEDLINE citations

    Full text link
    Objectives: Text categorization has been used in biomedical informatics for identifying documents containing relevant topics of interest. We developed a simple method that uses a chi-square-based scoring function to determine the likelihood of MEDLINE citations containing genetic relevant topic. Methods: Our procedure requires construction of a genetic and a nongenetic domain document corpus. We used MeSH descriptors assigned to MEDLINE citations for this categorization task. We compared frequencies of MeSH descriptors between two corpora applying chi-square test. A MeSH descriptor was considered to be a positive indicator if its relative observed frequency in the genetic domain corpus was greater than its relative observed frequency in the nongenetic domain corpus. The output of the proposed method is a list of scores for all the citations, with the highest score given to those citations containing MeSH descriptors typical for the genetic domain. Results: Validation was done on a set of 734 manually annotated MEDLINE citations. It achieved predictive accuracy of 0.87 with 0.69 recall and 0.64 precision. We evaluated the method by comparing it to three machine learning algorithms (support vector machines, decision trees, na\"ive Bayes). Although the differences were not statistically significantly different, results showed that our chi-square scoring performs as good as compared machine learning algorithms. Conclusions: We suggest that the chi-square scoring is an effective solution to help categorize MEDLINE citations. The algorithm is implemented in the BITOLA literature-based discovery support system as a preprocessor for gene symbol disambiguation process.Comment: 34 pages, 2 figure
    • …
    corecore