348,018 research outputs found

    An Evaluation Method for Context-Aware Systems in U-Health

    Get PDF
    Proceedings of: 3rd International Symposium on Ambient Intelligence (ISAmI 2012) Salamanca, March 28-30, 2012Evaluations for context-aware systems can not be conducted in the same manner evaluation is understood for other software systems where the concept of large corpus data, the establishment of ground truth and the metrics of precision and recall are used. Evaluation for changeable systems like context-aware and specially developed for AmI environments needs to be conducted to assess the impact and awareness of the users. E-Health represents a challenging domain where users(patients, patients' relatives and healthcare professionals) are very sensitive to systems' response. If system failure occurs it can conducts to a bad diagnosis or medication, or treatment. So a user-centred evaluation system is need to provide the system with users' feedback. In this paper, we present an evaluation method for context aware systems in AmI environments and specially to u-Heatlh domainFunded by projects CICYT TIN2008-06742-C02-02/TSI, CICYTTEC2008-06732 C02-02/TEC, SINPROB, CAM MADRINET S-0505/TIC/0255 and DPS2008-07029-C02-02.Publicad

    Named Entity Recognition in Electronic Health Records Using Transfer Learning Bootstrapped Neural Networks

    Full text link
    Neural networks (NNs) have become the state of the art in many machine learning applications, especially in image and sound processing [1]. The same, although to a lesser extent [2,3], could be said in natural language processing (NLP) tasks, such as named entity recognition. However, the success of NNs remains dependent on the availability of large labelled datasets, which is a significant hurdle in many important applications. One such case are electronic health records (EHRs), which are arguably the largest source of medical data, most of which lies hidden in natural text [4,5]. Data access is difficult due to data privacy concerns, and therefore annotated datasets are scarce. With scarce data, NNs will likely not be able to extract this hidden information with practical accuracy. In our study, we develop an approach that solves these problems for named entity recognition, obtaining 94.6 F1 score in I2B2 2009 Medical Extraction Challenge [6], 4.3 above the architecture that won the competition. Beyond the official I2B2 challenge, we further achieve 82.4 F1 on extracting relationships between medical terms. To reach this state-of-the-art accuracy, our approach applies transfer learning to leverage on datasets annotated for other I2B2 tasks, and designs and trains embeddings that specially benefit from such transfer.Comment: 11 pages, 4 figures, 8 table

    Wearable Computing for Health and Fitness: Exploring the Relationship between Data and Human Behaviour

    Get PDF
    Health and fitness wearable technology has recently advanced, making it easier for an individual to monitor their behaviours. Previously self generated data interacts with the user to motivate positive behaviour change, but issues arise when relating this to long term mention of wearable devices. Previous studies within this area are discussed. We also consider a new approach where data is used to support instead of motivate, through monitoring and logging to encourage reflection. Based on issues highlighted, we then make recommendations on the direction in which future work could be most beneficial

    An ontology co-design method for the co-creation of a continuous care ontology

    Get PDF
    Ontology engineering methodologies tend to emphasize the role of the knowledge engineer or require a very active role of domain experts. In this paper, a participatory ontology engineering method is described that holds the middle ground between these two 'extremes'. After thorough ethnographic research, an interdisciplinary group of domain experts closely interacted with ontology engineers and social scientists in a series of workshops. Once a preliminary ontology was developed, a dynamic care request system was built using the ontology. Additional workshops were organized involving a broader group of domain experts to ensure the applicability of the ontology across continuous care settings. The proposed method successfully actively engaged domain experts in constructing the ontology, without overburdening them. Its applicability is illustrated by presenting the co-created continuous care ontology. The lessons learned during the design and execution of the approach are also presented
    • 

    corecore