764 research outputs found

    An Experimental Microarchitecture for a Superconducting Quantum Processor

    Full text link
    Quantum computers promise to solve certain problems that are intractable for classical computers, such as factoring large numbers and simulating quantum systems. To date, research in quantum computer engineering has focused primarily at opposite ends of the required system stack: devising high-level programming languages and compilers to describe and optimize quantum algorithms, and building reliable low-level quantum hardware. Relatively little attention has been given to using the compiler output to fully control the operations on experimental quantum processors. Bridging this gap, we propose and build a prototype of a flexible control microarchitecture supporting quantum-classical mixed code for a superconducting quantum processor. The microarchitecture is based on three core elements: (i) a codeword-based event control scheme, (ii) queue-based precise event timing control, and (iii) a flexible multilevel instruction decoding mechanism for control. We design a set of quantum microinstructions that allows flexible control of quantum operations with precise timing. We demonstrate the microarchitecture and microinstruction set by performing a standard gate-characterization experiment on a transmon qubit.Comment: 13 pages including reference. 9 figure

    Full-Stack, Real-System Quantum Computer Studies: Architectural Comparisons and Design Insights

    Full text link
    In recent years, Quantum Computing (QC) has progressed to the point where small working prototypes are available for use. Termed Noisy Intermediate-Scale Quantum (NISQ) computers, these prototypes are too small for large benchmarks or even for Quantum Error Correction, but they do have sufficient resources to run small benchmarks, particularly if compiled with optimizations to make use of scarce qubits and limited operation counts and coherence times. QC has not yet, however, settled on a particular preferred device implementation technology, and indeed different NISQ prototypes implement qubits with very different physical approaches and therefore widely-varying device and machine characteristics. Our work performs a full-stack, benchmark-driven hardware-software analysis of QC systems. We evaluate QC architectural possibilities, software-visible gates, and software optimizations to tackle fundamental design questions about gate set choices, communication topology, the factors affecting benchmark performance and compiler optimizations. In order to answer key cross-technology and cross-platform design questions, our work has built the first top-to-bottom toolflow to target different qubit device technologies, including superconducting and trapped ion qubits which are the current QC front-runners. We use our toolflow, TriQ, to conduct {\em real-system} measurements on 7 running QC prototypes from 3 different groups, IBM, Rigetti, and University of Maryland. From these real-system experiences at QC's hardware-software interface, we make observations about native and software-visible gates for different QC technologies, communication topologies, and the value of noise-aware compilation even on lower-noise platforms. This is the largest cross-platform real-system QC study performed thus far; its results have the potential to inform both QC device and compiler design going forward.Comment: Preprint of a publication in ISCA 201

    Optimal ILP-Based Approach for Gate Location Assignment and Scheduling in Quantum Circuits

    Get PDF
    Physical design and synthesis are two key processes of quantum circuit design methodology. The physical design process itself decomposes into scheduling, mapping, routing, and placement. In this paper, a mathematical model is proposed for mapping, routing, and scheduling in ion-trap technology in order to minimize latency of the circuit. The proposed model which is a mixed integer linear programming (MILP) model gives the optimal locations for gates and the best sequence of operations in terms of latency. Experimental results show that our scheme outperforms the other schemes for the attempted benchmarks

    Arithmetic on a Distributed-Memory Quantum Multicomputer

    Full text link
    We evaluate the performance of quantum arithmetic algorithms run on a distributed quantum computer (a quantum multicomputer). We vary the node capacity and I/O capabilities, and the network topology. The tradeoff of choosing between gates executed remotely, through ``teleported gates'' on entangled pairs of qubits (telegate), versus exchanging the relevant qubits via quantum teleportation, then executing the algorithm using local gates (teledata), is examined. We show that the teledata approach performs better, and that carry-ripple adders perform well when the teleportation block is decomposed so that the key quantum operations can be parallelized. A node size of only a few logical qubits performs adequately provided that the nodes have two transceiver qubits. A linear network topology performs acceptably for a broad range of system sizes and performance parameters. We therefore recommend pursuing small, high-I/O bandwidth nodes and a simple network. Such a machine will run Shor's algorithm for factoring large numbers efficiently.Comment: 24 pages, 10 figures, ACM transactions format. Extended version of Int. Symp. on Comp. Architecture (ISCA) paper; v2, correct one circuit error, numerous small changes for clarity, add reference

    Compiling Quantum Circuits for Dynamically Field-Programmable Neutral Atoms Array Processors

    Full text link
    Dynamically field-programmable qubit arrays (DPQA) have recently emerged as a promising platform for quantum information processing. In DPQA, atomic qubits are selectively loaded into arrays of optical traps that can be reconfigured during the computation itself. Leveraging qubit transport and parallel, entangling quantum operations, different pairs of qubits, even those initially far away, can be entangled at different stages of the quantum program execution. Such reconfigurability and non-local connectivity present new challenges for compilation, especially in the layout synthesis step which places and routes the qubits and schedules the gates. In this paper, we consider a DPQA architecture that contains multiple arrays and supports 2D array movements, representing cutting-edge experimental platforms. Within this architecture, we discretize the state space and formulate layout synthesis as a satisfactory modulo theories problem, which can be solved by existing solvers optimally in terms of circuit depth. For a set of benchmark circuits generated by random graphs with complex connectivities, our compiler OLSQ-DPQA reduces the number of two-qubit entangling gates on small problem instances by 1.7x compared to optimal compilation results on a fixed planar architecture. To further improve scalability and practicality of the method, we introduce a greedy heuristic inspired by the iterative peeling approach in classical integrated circuit routing. Using a hybrid approach that combined the greedy and optimal methods, we demonstrate that our DPQA-based compiled circuits feature reduced scaling overhead compared to a grid fixed architecture, resulting in 5.1X less two-qubit gates for 90 qubit quantum circuits. These methods enable programmable, complex quantum circuits with neutral atom quantum computers, as well as informing both future compilers and future hardware choices.Comment: An extended abstract of this work was presented at the 41st International Conference on Computer-Aided Design (ICCAD '22
    corecore