13,132 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Tandem: A Context-Aware Method for Spontaneous Clustering of Dynamic Wireless Sensor Nodes

    Get PDF
    Wireless sensor nodes attached to everyday objects and worn by people are able to collaborate and actively assist users in their activities. We propose a method through which wireless sensor nodes organize spontaneously into clusters based on a common context. Provided that the confidence of sharing a common context varies in time, the algorithm takes into account a window-based history of believes. We approximate the behaviour of the algorithm using a Markov chain model and we analyse theoretically the cluster stability. We compare the theoretical approximation with simulations, by making use of experimental results reported from field tests. We show the tradeoff between the time history necessary to achieve a certain stability and the responsiveness of the clustering algorithm

    Gravitational Clustering: A Simple, Robust and Adaptive Approach for Distributed Networks

    Full text link
    Distributed signal processing for wireless sensor networks enables that different devices cooperate to solve different signal processing tasks. A crucial first step is to answer the question: who observes what? Recently, several distributed algorithms have been proposed, which frame the signal/object labelling problem in terms of cluster analysis after extracting source-specific features, however, the number of clusters is assumed to be known. We propose a new method called Gravitational Clustering (GC) to adaptively estimate the time-varying number of clusters based on a set of feature vectors. The key idea is to exploit the physical principle of gravitational force between mass units: streaming-in feature vectors are considered as mass units of fixed position in the feature space, around which mobile mass units are injected at each time instant. The cluster enumeration exploits the fact that the highest attraction on the mobile mass units is exerted by regions with a high density of feature vectors, i.e., gravitational clusters. By sharing estimates among neighboring nodes via a diffusion-adaptation scheme, cooperative and distributed cluster enumeration is achieved. Numerical experiments concerning robustness against outliers, convergence and computational complexity are conducted. The application in a distributed cooperative multi-view camera network illustrates the applicability to real-world problems.Comment: 12 pages, 9 figure
    corecore