4,960 research outputs found

    Robo-line storage: Low latency, high capacity storage systems over geographically distributed networks

    Get PDF
    Rapid advances in high performance computing are making possible more complete and accurate computer-based modeling of complex physical phenomena, such as weather front interactions, dynamics of chemical reactions, numerical aerodynamic analysis of airframes, and ocean-land-atmosphere interactions. Many of these 'grand challenge' applications are as demanding of the underlying storage system, in terms of their capacity and bandwidth requirements, as they are on the computational power of the processor. A global view of the Earth's ocean chlorophyll and land vegetation requires over 2 terabytes of raw satellite image data. In this paper, we describe our planned research program in high capacity, high bandwidth storage systems. The project has four overall goals. First, we will examine new methods for high capacity storage systems, made possible by low cost, small form factor magnetic and optical tape systems. Second, access to the storage system will be low latency and high bandwidth. To achieve this, we must interleave data transfer at all levels of the storage system, including devices, controllers, servers, and communications links. Latency will be reduced by extensive caching throughout the storage hierarchy. Third, we will provide effective management of a storage hierarchy, extending the techniques already developed for the Log Structured File System. Finally, we will construct a protototype high capacity file server, suitable for use on the National Research and Education Network (NREN). Such research must be a Cornerstone of any coherent program in high performance computing and communications

    NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 2

    Get PDF
    This report contains copies of nearly all of the technical papers and viewgraphs presented at the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Application. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include the following: magnetic disk and tape technologies; optical disk and tape; software storage and file management systems; and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's

    Proceedings of the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications

    Get PDF
    The proceedings of the National Space Science Data Center Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications held July 23 through 25, 1991 at the NASA/Goddard Space Flight Center are presented. The program includes a keynote address, invited technical papers, and selected technical presentations to provide a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's

    NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 1

    Get PDF
    Papers and viewgraphs from the conference are presented. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disks and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's

    The long hold: Storing data at the National Archives

    Get PDF
    The National Archives is, in many respects, in a unique position. For example, I find people from other organizations describing an archival medium as one which will last for three to five years. At the National Archives, we deal with the centuries, not years. From our perspective, there is no archival medium for data storage, and we do not expect there will ever be one. Predicting the long-term future of information technology beyond a mere five or ten years approaches the occult arts. But one prediction is probably safe. It is that the technology will continue to change, at least until analysts start talking about the post-information age. If we did have a medium which lasted a hundred years or longer, we probably would not have a device capable of reading it. The issue of obsolescence, as opposed to media stability, is more complex and more costly. It is especially complex at the National Archives because of two other aspects of our peculiar position. The first aspect is that we deal with incoherent data. The second is that we are charged with satisfying unknown and unknowable requirements. A brief overview of these aspects is presented

    Commissioning of the First Insertion Devices on the 1.5 GeV Storage Ring in MAX IV

    Get PDF
    When installing an insertion device (ID) in a storage ring the electron beam is affected. The positional displacement and angle deflection is called orbit displacement (OD) and higher order effects such as focusing of the electron beam are referred to as linear optics. The ability to perform multiple simultaneous experiments is crucial in a synchrotron light source such as MAX IV. This is impossible to achieve if one ID affects the output of another through the electron beam, making correction for an ID's effect on the beam imperative. This thesis covers the commissioning process of the first ID to be installed in the MAX IV 1.5 GeV storage ring (R1). The OD and linear optics of an elliptically polarised undulator (EPU) was to be compensated for in a feed forward approach. In essence the commissioning should make the ID transparent to the electron beam. A general procedure was developed using MATLAB and other software and libraries by first solving the problem on a model of the ring and then in the real storage ring. The electron orbit was corrected down to 1 micrometer for most settings of the ID which is close to the noise level of the measuring system of the ring. The commissioning is considered successful and the ID is ready for beamline delivery and will be able to run without affecting other beamlines. It was discovered that some magnetic coils performed 25 percent below their specifications, and that the beta beat of the bare R1 was at its worst 15 percent, something that should be improved for optimal performance of the facility.Ett insÀttningselement pÄ MAX IV Àr en förutsÀttning för det ljus man vill skapa, men pÄverkar elektronerna som far runt i anlÀggningen negativt - med hjÀlp av smarta elektromagneter kan detta lösas. MAX IV Àr en partikelaccelerator i vÀrldsklass. I anlÀggningen i utkanten av Lund swishar elektronerna i ljusets hastighet runt i enorma ringar av vakuumrör. Till skillnad frÄn vad mÄnga tror krockas hÀr dÀremot elektronerna inte mot nÄgot och man kollar varken efter antimateria eller Higgspartiklar. IstÀllet Àr anvÀndningsomrÄdet för MAX IV mer likt det för ett vanligt mikroskop. OrdsprÄket "att se nÄgot i ett nytt ljus" kan inte passa bÀttre Àn det man gör pÄ MAX IV. Elektronerna som leds runt de tvÄ ringarna i anlÀggningen Àr som vilken ström som helst och mÀts av forskarna i Ampere. Och precis som nÀr man slÄr pÄ strömbrytaren pÄ vÀggen hemma kan man anvÀnda strömmen till att skapa ljus. Skillnaden Àr att istÀllet för en glödlampa har man pÄ MAX IV ett sÄ kallat insÀttningselement. En annan skillnad till glödlampan hemma Àr att med insÀttningselementen och den vÀlskötta elektronstrÄlen kan man inte bara skapa vÀrldens skarpaste och starkaste ljus - utan ocksÄ ljus i nÀstan vilken fÀrg man vill! Med det producerade ljuset tittar de forskare som kommer till Lund frÄn hela vÀrlden nÀrmare pÄ sammansÀttningen av mediciner och material för att kunna förstÄ deras egenskaper och hur de kan anvÀndas. För att producera detta superskarpa ljus mÄste störningar pÄ elektronstrÄlen hÄllas till ett minimum, nÄgot insÀttningselementen försvÄrar. I elementen böjs elektronstrÄlen upp och ner i en svajande bana vilket skapar sjÀlva ljuset innan elektronerna enligt design lÀmnar elementet med samma vinkel och position i höjd- och sidled. Men trots noggrannheten i konstruktionen och installationen av insÀttningselementet, kan ett sÄ pass litet fel som 0.01 % i styrkan pÄ insÀttningselementet fÄ ödesdigra konsekvenser: elektronernas bana förÀndras sÄ pass mycket att de krockar med vÀggen pÄ röret och ljuset slÀcks direkt efter det satts igÄng. Detta dilemma kan som tur Àr lösas. En elektromagnet placeras före och efter insÀttningselementet och genom att Àndra styrkan pÄ elektromagneterna kan elektronernas bana korrigeras. Kruxet Àr att elektronstrÄlen inte kan korrigeras efter den har försvunnit in i sidan av vakuumröret. För varje instÀllning pÄ insÀttningselementet (tÀnk dig dimmerinstÀllningar till glödlampan) mÄste det i förvÀg finnas motsvarande styrkor pÄ elektromagneterna sÄ att i samma ögonblick som insÀttningselementet Àndrar sig gör ocksÄ elektromagneterna det och kompenserar. Denna metod för korrigering kallas feed forward, i kontrast till den vanligare metoden feed back. Med en hel tabell fylld av sÄdana instÀllningar kan MAX IV köras utan problem och producera vÀrldens skarpaste och starkaste ljus

    Trade-off study of data storage technologies

    Get PDF
    The need to store and retrieve large quantities of data at modest cost has generated the need for an economical, compact, archival mass storage system. Very significant improvements in the state-of-the-art of mass storage systems have been accomplished through the development of a number of magnetic, electro-optical, and other related devices. This study was conducted in order to do a trade-off between these data storage devices and the related technologies in order to determine an optimum approach for an archival mass data storage system based upon a comparison of the projected capabilities and characteristics of these devices to yield operational systems in the early 1980's

    A media maniac's guide to removable mass storage media

    Get PDF
    This paper addresses at a high level, the many individual technologies available today in the removable storage arena including removable magnetic tapes, magnetic floppies, optical disks and optical tape. Tape recorders represented below discuss logitudinal, serpantine, logitudinal serpantine,and helical scan technologies. The magnetic floppies discussed will be used for personal electronic in-box applications.Optical disks still fill the role for dense long-term storage. The media capacities quoted are for native data. In some cases, 2 KB ASC2 pages or 50 KB document images will be referenced
    • 

    corecore