1,014 research outputs found

    A Loss Tolerant Rate Controller for Reliable Multicast

    Get PDF
    This paper describes the design, specification, and performance of a Loss Tolerant Rate Controller (LTRC) for use in controlling reliable multicast senders. The purpose of this rate controller is not to adapt to congestion (or loss) on a per loss report basis (such as per received negative acknowledgment), but instead to use loss report information and perceived state to decide more prudent courses of action for both the short and long term. The goal of this controller is to be responsive to congestion, but not overly reactive to spurious independent loss. Performance of the controller is verified through simulation results

    Data Lifetime Estimation in a Multicast-Based CoAP Proxy

    Get PDF
    In this work we consider kernel-based record lifetime estimation in a proactive Internet of Things (IoT) proxy with multicast based cache management. Multicast refreshment requests were based on lifetime expiration for a predefined number of records. To reduce the traffic volume in the IoT domain, we assume that only nodes where the observed physical variable has changed its value will respond to the multicast request. For estimating the data lifetime at the proxy, we use Gaussian kernels, assuming that the intrinsic data lifetime probability distribution was taken from Erlang-k family of sub-exponential distributions. In this setup, we consider that the proxy connects to the IoT domain using an IEEE 802.15.4-compatible wireless network. Results indicate that narrow and symmetrical lifetime probability distributions require more frequent multicasting refreshments compared to wider and asymmetric ones. This increases traffic intensity and energy consumption in IoT domain. We quantify finding with numerical results

    Speeding Multicast by Acknowledgment Reduction Technique (SMART)

    Get PDF
    We present a novel feedback protocol for wireless broadcast networks that utilize linear network coding. We consider transmission of packets from one source to many receivers over a single-hop broadcast erasure channel. Our method utilizes a predictive model to request feedback only when the probability that all receivers have completed decoding is significant. In addition, our proposed NACK-based feedback mechanism enables all receivers to request, within a single time slot, the number of retransmissions needed for successful decoding. We present simulation results as well as analytical results that show the favorable scalability of our technique as the number of receivers, file size, and packet erasure probability increase. We also show the robustness of this scheme to uncertainty in the predictive model, including uncertainty in the number of receiving nodes and the packet erasure probability, as well as to losses of the feedback itself. Our scheme, SMART, is shown to perform nearly as well as an omniscient transmitter that requires no feedback. Furthermore, SMART, is shown to outperform current state of the art methods at any given erasure probability, file size, and numbers of receivers

    Teleoperation of passivity-based model reference robust control over the internet

    Get PDF
    This dissertation offers a survey of a known theoretical approach and novel experimental results in establishing a live communication medium through the internet to host a virtual communication environment for use in Passivity-Based Model Reference Robust Control systems with delays. The controller which is used as a carrier to support a robust communication between input-to-state stability is designed as a control strategy that passively compensates for position errors that arise during contact tasks and strives to achieve delay-independent stability for controlling of aircrafts or other mobile objects. Furthermore the controller is used for nonlinear systems, coordination of multiple agents, bilateral teleoperation, and collision avoidance thus maintaining a communication link with an upper bound of constant delay is crucial for robustness and stability of the overall system. For utilizing such framework an elucidation can be formulated by preparing site survey for analyzing not only the geographical distances separating the nodes in which the teleoperation will occur but also the communication parameters that define the virtual topography that the data will travel through. This survey will first define the feasibility of the overall operation since the teleoperation will be used to sustain a delay based controller over the internet thus obtaining a hypothetical upper bound for the delay via site survey is crucial not only for the communication system but also the delay is required for the design of the passivity-based model reference robust control. Following delay calculation and measurement via site survey, bandwidth tests for unidirectional and bidirectional communication is inspected to ensure that the speed is viable to maintain a real-time connection. Furthermore from obtaining the results it becomes crucial to measure the consistency of the delay throughout a sampled period to guarantee that the upper bound is not breached at any point within the communication to jeopardize the robustness of the controller. Following delay analysis a geographical and topological overview of the communication is also briefly examined via a trace-route to understand the underlying nodes and their contribution to the delay and round-trip consistency. To accommodate the communication channel for the controller the input and output data from both nodes need to be encapsulated within a transmission control protocol via a multithreaded design of a robust program within the C language. The program will construct a multithreaded client-server relationship in which the control data is transmitted. For added stability and higher level of security the channel is then encapsulated via an internet protocol security by utilizing a protocol suite for protecting the communication by authentication and encrypting each packet of the session using negotiation of cryptographic keys during each session

    Best effort measurement based congestion control

    Get PDF
    Abstract available: p.

    SCPS-TP, TCP, and Rate-Based Protocol Evaluation

    Get PDF
    Tests were performed at Glenn Research Center to compare the performance of the Space Communications Protocol Standard Transport Protocol (SCPS TP, otherwise known as "TCP Tranquility") relative to other variants of TCP and to determine the implementation maturity level of these protocols, particularly for higher speeds. The testing was performed over reasonably high data rates of up to 100 Mbps with delays that are characteristic of near-planetary environments. The tests were run for a fixed packet size, but for variously errored environments. This report documents the testing performed to date
    corecore