47 research outputs found

    On small Mixed Pattern Ramsey numbers

    Full text link
    We call the minimum order of any complete graph so that for any coloring of the edges by kk colors it is impossible to avoid a monochromatic or rainbow triangle, a Mixed Ramsey number. For any graph HH with edges colored from the above set of kk colors, if we consider the condition of excluding HH in the above definition, we produce a \emph{Mixed Pattern Ramsey number}, denoted Mk(H)M_k(H). We determine this function in terms of kk for all colored 44-cycles and all colored 44-cliques. We also find bounds for Mk(H)M_k(H) when HH is a monochromatic odd cycles, or a star for sufficiently large kk. We state several open questions.Comment: 16 page

    Improved bounds on the multicolor Ramsey numbers of paths and even cycles

    Full text link
    We study the multicolor Ramsey numbers for paths and even cycles, Rk(Pn)R_k(P_n) and Rk(Cn)R_k(C_n), which are the smallest integers NN such that every coloring of the complete graph KNK_N has a monochromatic copy of PnP_n or CnC_n respectively. For a long time, Rk(Pn)R_k(P_n) has only been known to lie between (k1+o(1))n(k-1+o(1))n and (k+o(1))n(k + o(1))n. A recent breakthrough by S\'ark\"ozy and later improvement by Davies, Jenssen and Roberts give an upper bound of (k14+o(1))n(k - \frac{1}{4} + o(1))n. We improve the upper bound to (k12+o(1))n(k - \frac{1}{2}+ o(1))n. Our approach uses structural insights in connected graphs without a large matching. These insights may be of independent interest

    Online list coloring for signed graphs

    Get PDF
    We generalize the notion of online list coloring to signed graphs. We define the online list chromatic number of a signed graph, and prove a generalization of Brooks’ Theorem. We also give necessary and sufficient conditions for a signed graph to be degree paintable, or degree choosable. Finally, we classify the 2-list-colorable and 2-list-paintable signed graphs

    Colorings of graphs, digraphs, and hypergraphs

    Get PDF
    Brooks' Theorem ist eines der bekanntesten Resultate über Graphenfärbungen: Sei G ein zusammenhängender Graph mit Maximalgrad d. Ist G kein vollständiger Graph, so lassen sich die Ecken von G so mit d Farben färben, dass zwei benachbarte Ecken unterschiedlich gefärbt sind. In der vorliegenden Arbeit liegt der Fokus auf Verallgemeinerungen von Brooks Theorem für Färbungen von Hypergraphen und gerichteten Graphen. Eine Färbung eines Hypergraphen ist eine Färbung der Ecken so, dass keine Kante monochromatisch ist. Auf Hypergraphen erweitert wurde der Satz von Brooks von R.P. Jones. Im ersten Teil der Dissertation werden Möglichkeiten aufgezeigt, das Resultat von Jones weiter zu verallgemeinern. Kernstück ist ein Zerlegungsresultat: Zu einem Hypergraphen H und einer Folge f=(f_1,…,f_p) von Funktionen, welche von V(H) in die natürlichen Zahlen abbilden, wird untersucht, ob es eine Zerlegung von H in induzierte Unterhypergraphen H_1,…,H_p derart gibt, dass jedes H_i strikt f_i-degeneriert ist. Dies bedeutet, dass jeder Unterhypergraph H_i' von H_i eine Ecke v enthält, deren Grad in H_i' kleiner als f_i(v) ist. Es wird bewiesen, dass die Bedingung f_1(v)+…+f_p(v) \geq d_H(v) für alle v fast immer ausreichend für die Existenz einer solchen Zerlegung ist und gezeigt, dass sich die Ausnahmefälle gut charakterisieren lassen. Durch geeignete Wahl der Funktion f lassen sich viele bekannte Resultate ableiten, was im dritten Kapitel erörtert wird. Danach werden zwei weitere Verallgemeinerungen des Satzes von Jones bewiesen: Ein Theorem zu DP-Färbungen von Hypergraphen und ein Resultat, welches die chromatische Zahl eines Hypergraphen mit dessen maximalem lokalen Kantenzusammenhang verbindet. Der zweite Teil untersucht Färbungen gerichteter Graphen. Eine azyklische Färbung eines gerichteten Graphen ist eine Färbung der Eckenmenge des gerichteten Graphen sodass es keine monochromatischen gerichteten Kreise gibt. Auf dieses Konzept lassen sich viele klassische Färbungsresultate übertragen. Dazu zählt auch Brooks Theorem, wie von Mohar bewiesen wurde. Im siebten Kapitel werden DP-Färbungen gerichteter Graphen untersucht. Insbesondere erfolgt der Transfer von Mohars Theorem auf DP-Färbungen. Das darauffolgende Kapitel befasst sich mit kritischen gerichteten Graphen. Insbesondere werden Konstruktionen für diese angegeben und die gerichtete Version des Satzes von Hajós bewiesen.Brooks‘ Theorem is one of the most known results in graph coloring theory: Let G be a connected graph with maximum degree d >2. If G is not a complete graph, then there is a coloring of the vertices of G with d colors such that no two adjacent vertices get the same color. Based on Brooks' result, various research topics in graph coloring arose. Also, it became evident that Brooks' Theorem could be transferred to many other coloring-concepts. The present thesis puts its focus especially on two of those concepts: hypergraphs and digraphs. A coloring of a hypergraph H is a coloring of its vertices such that no edge is monochromatic. Brooks' Theorem for hypergraphs was obtained by R.P. Jones. In the first part of this thesis, we present several ways how to further extend Jones' theorem. The key element is a partition result, to which the second chapter is devoted. Given a hypergraph H and a sequence f=(f_1,…,f_p) of functions, we examine if there is a partition of HH into induced subhypergraphs H_1,…,H_p such that each of the H_i is strictly f_i-degenerate. This means that in each non-empty subhypergraph H_i' of H_i there is a vertex v having degree d_{H_i'}(v

    Parameterized Inapproximability of Independent Set in HH-Free Graphs

    Get PDF
    We study the Independent Set (IS) problem in HH-free graphs, i.e., graphs excluding some fixed graph HH as an induced subgraph. We prove several inapproximability results both for polynomial-time and parameterized algorithms. Halld\'orsson [SODA 1995] showed that for every δ>0\delta>0 IS has a polynomial-time (d12+δ)(\frac{d-1}{2}+\delta)-approximation in K1,dK_{1,d}-free graphs. We extend this result by showing that Ka,bK_{a,b}-free graphs admit a polynomial-time O(α(G)11/a)O(\alpha(G)^{1-1/a})-approximation, where α(G)\alpha(G) is the size of a maximum independent set in GG. Furthermore, we complement the result of Halld\'orsson by showing that for some γ=Θ(d/logd),\gamma=\Theta(d/\log d), there is no polynomial-time γ\gamma-approximation for these graphs, unless NP = ZPP. Bonnet et al. [IPEC 2018] showed that IS parameterized by the size kk of the independent set is W[1]-hard on graphs which do not contain (1) a cycle of constant length at least 44, (2) the star K1,4K_{1,4}, and (3) any tree with two vertices of degree at least 33 at constant distance. We strengthen this result by proving three inapproximability results under different complexity assumptions for almost the same class of graphs (we weaken condition (2) that GG does not contain K1,5K_{1,5}). First, under the ETH, there is no f(k)no(k/logk)f(k)\cdot n^{o(k/\log k)} algorithm for any computable function ff. Then, under the deterministic Gap-ETH, there is a constant δ>0\delta>0 such that no δ\delta-approximation can be computed in f(k)nO(1)f(k) \cdot n^{O(1)} time. Also, under the stronger randomized Gap-ETH there is no such approximation algorithm with runtime f(k)no(k)f(k)\cdot n^{o(k)}. Finally, we consider the parameterization by the excluded graph HH, and show that under the ETH, IS has no no(α(H))n^{o(\alpha(H))} algorithm in HH-free graphs and under Gap-ETH there is no d/ko(1)d/k^{o(1)}-approximation for K1,dK_{1,d}-free graphs with runtime f(d,k)nO(1)f(d,k) n^{O(1)}.Comment: Preliminary version of the paper in WG 2020 proceeding

    Weak degeneracy of graphs

    Full text link
    Motivated by the study of greedy algorithms for graph coloring, we introduce a new graph parameter, which we call weak degeneracy. By definition, every dd-degenerate graph is also weakly dd-degenerate. On the other hand, if GG is weakly dd-degenerate, then χ(G)d+1\chi(G) \leq d + 1 (and, moreover, the same bound holds for the list-chromatic and even the DP-chromatic number of GG). It turns out that several upper bounds in graph coloring theory can be phrased in terms of weak degeneracy. For example, we show that planar graphs are weakly 44-degenerate, which implies Thomassen's famous theorem that planar graphs are 55-list-colorable. We also prove a version of Brooks's theorem for weak degeneracy: a connected graph GG of maximum degree d3d \geq 3 is weakly (d1)(d-1)-degenerate unless GKd+1G \cong K_{d + 1}. (By contrast, all dd-regular graphs have degeneracy dd.) We actually prove an even stronger result, namely that for every d3d \geq 3, there is ϵ>0\epsilon > 0 such that if GG is a graph of weak degeneracy at least dd, then either GG contains a (d+1)(d+1)-clique or the maximum average degree of GG is at least d+ϵd + \epsilon. Finally, we show that graphs of maximum degree dd and either of girth at least 55 or of bounded chromatic number are weakly (dΩ(d))(d - \Omega(\sqrt{d}))-degenerate, which is best possible up to the value of the implied constant.Comment: 21 p
    corecore