8,141 research outputs found

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Verification of Agent-Based Artifact Systems

    Full text link
    Artifact systems are a novel paradigm for specifying and implementing business processes described in terms of interacting modules called artifacts. Artifacts consist of data and lifecycles, accounting respectively for the relational structure of the artifacts' states and their possible evolutions over time. In this paper we put forward artifact-centric multi-agent systems, a novel formalisation of artifact systems in the context of multi-agent systems operating on them. Differently from the usual process-based models of services, the semantics we give explicitly accounts for the data structures on which artifact systems are defined. We study the model checking problem for artifact-centric multi-agent systems against specifications written in a quantified version of temporal-epistemic logic expressing the knowledge of the agents in the exchange. We begin by noting that the problem is undecidable in general. We then identify two noteworthy restrictions, one syntactical and one semantical, that enable us to find bisimilar finite abstractions and therefore reduce the model checking problem to the instance on finite models. Under these assumptions we show that the model checking problem for these systems is EXPSPACE-complete. We then introduce artifact-centric programs, compact and declarative representations of the programs governing both the artifact system and the agents. We show that, while these in principle generate infinite-state systems, under natural conditions their verification problem can be solved on finite abstractions that can be effectively computed from the programs. Finally we exemplify the theoretical results of the paper through a mainstream procurement scenario from the artifact systems literature

    A Taxonomy for and Analysis of Anonymous Communications Networks

    Get PDF
    Any entity operating in cyberspace is susceptible to debilitating attacks. With cyber attacks intended to gather intelligence and disrupt communications rapidly replacing the threat of conventional and nuclear attacks, a new age of warfare is at hand. In 2003, the United States acknowledged that the speed and anonymity of cyber attacks makes distinguishing among the actions of terrorists, criminals, and nation states difficult. Even President Obama’s Cybersecurity Chief-elect recognizes the challenge of increasingly sophisticated cyber attacks. Now through April 2009, the White House is reviewing federal cyber initiatives to protect US citizen privacy rights. Indeed, the rising quantity and ubiquity of new surveillance technologies in cyberspace enables instant, undetectable, and unsolicited information collection about entities. Hence, anonymity and privacy are becoming increasingly important issues. Anonymization enables entities to protect their data and systems from a diverse set of cyber attacks and preserves privacy. This research provides a systematic analysis of anonymity degradation, preservation and elimination in cyberspace to enhance the security of information assets. This includes discovery/obfuscation of identities and actions of/from potential adversaries. First, novel taxonomies are developed for classifying and comparing well-established anonymous networking protocols. These expand the classical definition of anonymity and capture the peer-to-peer and mobile ad hoc anonymous protocol family relationships. Second, a unique synthesis of state-of-the-art anonymity metrics is provided. This significantly aids an entity’s ability to reliably measure changing anonymity levels; thereby, increasing their ability to defend against cyber attacks. Finally, a novel epistemic-based mathematical model is created to characterize how an adversary reasons with knowledge to degrade anonymity. This offers multiple anonymity property representations and well-defined logical proofs to ensure the accuracy and correctness of current and future anonymous network protocol design

    MCMAS: an open-source model checker for the verification of multi-agent systems

    Get PDF
    We present MCMAS, a model checker for the verification of multi-agent systems. MCMAS supports efficient symbolic techniques for the verification of multi-agent systems against specifications representing temporal, epistemic and strategic properties. We present the underlying semantics of the specification language supported and the algorithms implemented in MCMAS, including its fairness and counterexample generation features. We provide a detailed description of the implementation. We illustrate its use by discussing a number of examples and evaluate its performance by comparing it against other model checkers for multi-agent systems on a common case study

    MCMAS: an open-source model checker for the verification of multi-agent systems

    Get PDF
    We present MCMAS, a model checker for the verification of multi-agent systems. MCMAS supports efficient symbolic techniques for the verification of multi-agent systems against specifications representing temporal, epistemic and strategic properties. We present the underlying semantics of the specification language supported and the algorithms implemented in MCMAS, including its fairness and counterexample generation features. We provide a detailed description of the implementation. We illustrate its use by discussing a number of examples and evaluate its performance by comparing it against other model checkers for multi-agent systems on a common case study

    Towards formal models and languages for verifiable Multi-Robot Systems

    Get PDF
    Incorrect operations of a Multi-Robot System (MRS) may not only lead to unsatisfactory results, but can also cause economic losses and threats to safety. These threats may not always be apparent, since they may arise as unforeseen consequences of the interactions between elements of the system. This call for tools and techniques that can help in providing guarantees about MRSs behaviour. We think that, whenever possible, these guarantees should be backed up by formal proofs to complement traditional approaches based on testing and simulation. We believe that tailored linguistic support to specify MRSs is a major step towards this goal. In particular, reducing the gap between typical features of an MRS and the level of abstraction of the linguistic primitives would simplify both the specification of these systems and the verification of their properties. In this work, we review different agent-oriented languages and their features; we then consider a selection of case studies of interest and implement them useing the surveyed languages. We also evaluate and compare effectiveness of the proposed solution, considering, in particular, easiness of expressing non-trivial behaviour.Comment: Changed formattin

    Online Health Communities and the Patient-Doctor Relationship:An Institutional Logics Perspective

    Get PDF
    Taking an institutional logics perspective, this study investigates how “internet-informed” patients manage tensions between the logic of personal choice and the logic of medical professionalism as they navigate treatment decisions and the patient-doctor relationship. Based on 44 semi-structured interviews with members of an online health community for people with diabetes, this study finds that patients exercise a great deal of agency in evaluating healthcare options not only by activating the logic of personal choice but also by appropriating the logic of medical professionalism. Furthermore, patients are strategic in deciding what community advice to share with their doctor or nurse depending on the healthcare professionals' reaction to the logic of personal choice. In contrast to many previous studies that emphasise patient consumerism fuelled by information on the Internet, this study provides a more nuanced picture of patient-doctor relationship engendered by patients’ participation in online health communities

    Specification and Verification of Commitment-Regulated Data-Aware Multiagent Systems

    Get PDF
    In this paper we investigate multi agent systems whose agent interaction is based on social commitments that evolve over time, in presence of (possibly incomplete) data. In particular, we are interested in modeling and verifying how data maintained by the agents impact on the dynamics of such systems, and on the evolution of their commitments. This requires to lift the commitment-related conditions studied in the literature, which are typically based on propositional logics, to a first-order setting. To this purpose, we propose a rich framework for modeling data-aware commitment-based multiagent systems. In this framework, we study verification of rich temporal properties, establishing its decidability under the condition of “state-boundedness”, i.e., data items come from an infinite domain but, at every time point, each agent can store only a bounded number of them

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks
    corecore